Skip to main content
Log in

Lateral redistribution of transmembrane proteins and liquid-ordered domains in lipid membranes with inhomogeneous curvature

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

A number of processes in living cells are accompanied by significant changes of the geometric curvature of lipid membranes. In turn, heterogeneity of the lateral curvature can lead to spatial redistribution of membrane components, most important of which are transmembrane proteins and liquid-ordered lipid-protein domains. These components have a so-called hydrophobic mismatch: the length of the transmembrane domain of the protein, or the thickness of the bilayer of the domain differ from the thickness of the surrounding membrane. In this work we consider redistribution of membrane components with hydrophobic mismatch in membranes with non-uniform geometric curvature. Dependence of the components’ energy on the curvature is calculated in terms of theory of elasticity of liquid crystals adapted to lipid membranes. According to the calculations, transmembrane proteins prefer regions of the membrane with zero curvature. Liquid-ordered domains having a size of a few nm distribute mainly into regions of the membrane with small negative curvature appearing in the cell plasma membrane in the process of endocytosis. The distribution of domains of a large radius is determined by a decrease of their perimeter upon bending; these domains distribute into membrane regions with relatively large curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Capraro B.R., Yoon Y., Cho W., Baumgart T. 2010. Curvature sensing by the epsin N-terminal homology (ENTH) domain measured on cylindrical lipid membrane tethers. J. Am. Chem. Soc. 132, 1200–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kamal M.M., Mills D., Grzybek M., Howard J. 2009. Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proc. Natl. Acad. Sci. USA. 106, 22245–22250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quemeneur F., Sigurdsson J.K., Renner M., Atzberger P.J., Bassereau P., Lacoste D. 2014. Membrane shaping proteins and implications for their mobility in lipid membranes. Proc. Natl. Acad. Sci. USA. 111, 5083–5087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bashkirov P.V., Chekashkina K.V., Akimov S.A., Kuzmin P.I., Frolov V.A. 2011. Variation of lipid membrane composition caused by strong bending. Biol. Membrany (Rus.). 28, 145–152.

    CAS  Google Scholar 

  5. Galimzyanov T.R., Akimov S.A. 2011. Phase separation in lipid membranes induced by the elastic properties of components. JETP Letters. 93, 463–469.

    Article  CAS  Google Scholar 

  6. Karpunin D.V., Akimov S.A., Frolov V.A. 2005. Pore formation in lipid membranes containing lysolipids and cholesterol. Biol. Membrany (Rus.). 22, 429–432.

    CAS  Google Scholar 

  7. Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572.

    Article  CAS  PubMed  Google Scholar 

  8. Edidin M. 2001. Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell. Biol. 11, 492–496.

    Article  CAS  PubMed  Google Scholar 

  9. Ayuyan A.G., Cohen F.S. 2008. Raft composition at physiological temperature and pH in the absence of detergents. Biophys. J. 94, 2654–2666.

    Article  CAS  PubMed  Google Scholar 

  10. Heftberger P., Kollmitzer B., Rieder A.A., Amenitsch H., Pabst G. 2015. In situ determination of structure and fluctuations of coexisting fluid membrane domains. Biophys. J. 108, 854–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia-Saez A.J., Chiantia S., Schwille P. 2007. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282, 33537–33544.

    Article  CAS  PubMed  Google Scholar 

  12. Rinia H.A., Snel M.M.E., van der Eerden J.P.J.M., de Kruijff B. 2001. Imaging domains in model membranes with atomic force microscopy. FEBS Lett. 501, 194–199.

    Article  Google Scholar 

  13. Weiss T.M., van der Wel P.C.A., Killian J.A., Koeppe R.E., Huang H.W. 2003. Hydrophobic mismatch between helices and lipid bilayers. Biophys. J. 84, 379–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gandhavadi M., Allende D., Vidal A., Simon S.A., McIntosh T.J. 2002. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys. J. 82, 1469–1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scheiffele P., Roth M.G., Simons K. 1997. Interaction of influenza virus haemagglutinin with sphingolipidcholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501–5508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scheiffele P., Rietveld A., Simons K. 1999. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044.

    Article  CAS  PubMed  Google Scholar 

  17. Takeda M., Leser G.P., Russell C.J., Lamb R.A. 2003. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc. Natl. Acad. Sci. USA. 100, 14610–14617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galimzyanov T.R., Molotkovsky R.J., Kuzmin P.I., Akimov S.A. 2011. Stabilization of bilayer structure of raft due to elastic deformations of membrane. Biol. Membrany (Rus.). 28, 307–314.

    CAS  Google Scholar 

  19. Galimzyanov T.R., Molotkovsky R.J., Bozdaganyan M.E., Cohen F.S., Pohl P., Akimov S.A. 2015. Elastic membrane deformations govern interleaflet coupling of lipid-ordered domains. Phys. Rev. Lett. 115, 088101-1–88101-5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Risselada H.J., Marrink S.J. 2008. The molecular face of lipid rafts in model membranes. Proc. Natl. Acad. Sci. USA. 105, 17367–17372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perlmutter J.D., Sachs J.N. 2011. Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations. J. Am. Chem. Soc. 133, 6563–6577.

    Article  CAS  PubMed  Google Scholar 

  22. Galimzyanov T.R., Molotkovsky R.J., Kheyfets B.B., Akimov S.A. 2013. Energy of the interaction between membrane lipid domains calculated from splay and tilt deformations. JETP Letters. 96, 681–686.

    Article  CAS  Google Scholar 

  23. Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E. 3, 323–335.

    Article  CAS  Google Scholar 

  24. Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamm M., Kozlov M.M. 1998. Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B. 6, 519–528.

    Article  CAS  Google Scholar 

  26. Pan J., Tristram-Nagle S., Nagle J.F. 2009. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys. Rev. E 80, 021931.

    Article  Google Scholar 

  27. Baumgart T., Das S., Webb W.W., Jenkins J.T. 2005. Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89, 1067–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baumgart T., Hess S.T., Webb W.W. 2003. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature. 425, 821–824.

    Article  CAS  PubMed  Google Scholar 

  30. Akimov S.A., Hlaponin E.A., Bashkirov P.V., Boldyrev I.A., Mikhalyov I.I., Telford W.G., Molotkovskaya I.M. 2009. Ganglioside GM1 increases line tension at raft boundary in model membranes. Biol. Membrany (Rus.). 26, 234–239.

    CAS  Google Scholar 

  31. Tang Q., Edidin M. 2003. Lowering the barriers to random walks on the cell surface. Biophys. J. 84, 400–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasaki S., Yui N., Noda Y. 2014. Actin directly interacts with different membrane channel proteins and influences channel activities: AQP2 as a model. Biochim. Biophys. Acta. 1838, 514–520.

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe S., Trimbuch T., Camacho-Perez M., Rost B.R., Brokowski B., Sohl-Kielczynski B., Felies A., Davis M.W., Rosenmund C., Jorgensen E.M. 2014. Clathrin regenerates synaptic vesicles from endosomes. Nature. 515, 228–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wahl S., Katiyar R., Schmitz F. 2013. A local, periactive zone endocytic machinery at photoreceptor synapses in close vicinity to synaptic ribbons. J. Neurosci. 33, 10278–10300.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Akimov.

Additional information

Original Russian Text © D.S. Osipenko, T.R. Galimzyanov, S.A. Akimov, 2016, published in Biologicheskie Membrany, 2016, Vol. 33, No. 3, pp. 176–186.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipenko, D.S., Galimzyanov, T.R. & Akimov, S.A. Lateral redistribution of transmembrane proteins and liquid-ordered domains in lipid membranes with inhomogeneous curvature. Biochem. Moscow Suppl. Ser. A 10, 259–268 (2016). https://doi.org/10.1134/S1990747816030077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747816030077

Keywords

Navigation