Skip to main content
Log in

The Dynamics of the Formation of Cytochrome c Complexes with Anionic Lipids and the Mechanism of the Production of Lipid Radicals Catalyzed by These Complexes

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

In the present work, the recorded kinetics of chemiluminescence enhanced by coumarin 334 indicated that the complexes of cytochrome c (Cyt) with anionic lipids (Cyt-AL), such as cardiolipin (CL) and phosphatidic acid (PA), when added to mitochondrial and cytoplasmic membranes, are capable of catalysing reactions of lipid free radical formation. The effect of Cyt-CL complex was studied on mitochondria isolated from the liver of male Wistar rats and male outbred mice, as well as on erythrocytes isolated from the blood of male Wistar rats. It was shown that complex Cyt-PA exerts a peroxidase effect similar to the effect produced by Cyt-CL. Upon exposure to Cyt-CL, the formation of free radicals was more prominent in mitochondrial ghosts (mitochondria subjected to freeze-thawing and washed by several precipitation–resuspension cycles) than in intact mitochondria. This suggests that Cyt-CL does not pass through biological membranes: even if it penetrates into them, it probably gets stuck in the phospholipid bilayer. Thus, the previously discovered cytotoxic effect of Cyt-CL on cancer cells is most likely due to peroxidation of the cytoplasmic membrane, but not of the inner membrane of mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Skulachev V.P. 1996. Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett. 397 (1), 7–10.

    Article  CAS  PubMed  Google Scholar 

  2. Skulachev V.P. 2000. Mitochondria in the programmed death phenomena; A principle of biology: “It is better to die than to be wrong”. IUBMB Life. 49 (5), 365–373.

    Article  CAS  PubMed  Google Scholar 

  3. Vladimirov Y.A. 2002. The loss of barrier properties by inner and outer mitochondrial membranes, necrosis and apoptosis. Biol. Membrany (Rus.).19, 356–377.

    CAS  Google Scholar 

  4. Hunter D.R., Haworth R.A. 1979. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch. Biochem. Biophys. 195 (2), 453–459.

    Article  CAS  PubMed  Google Scholar 

  5. Hunter D.R., Haworth R.A. 1979. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem. Biophys. 195 (2), 468–477.

    Article  CAS  PubMed  Google Scholar 

  6. Korkina L.G., Sorokovoy V.I., Vladimirov Y.A. 1973. Accumulation of Ca2+ in mitochondrial membranes and Ca2+-induced membrane damage studied with chlorotetracycline as a fluorescent probe. Studia Biophysica. 3, 177–192.

    Google Scholar 

  7. Brustugun O.T., Fladmark K., Døskeland S., Orrenius S., Zhivotovsky B. 1998. Apoptosis induced by microinjection of cytochrome C is caspase-dependent and is inhibited by Bcl-2. Cell Death Differ.5 (8), 660–668.

    Article  CAS  PubMed  Google Scholar 

  8. Zhivotovsky B., Orrenius S., Brustugun O.T., Doskeland S.O. 1998. Injected cytochrome c induces apoptosis. Nature. 391 (6666), 449–450.

    Article  CAS  PubMed  Google Scholar 

  9. Green D.R., Llambi F. 2015. Cell death signaling. Cold Spring Harb Perspect Biol. 7 (12), a006080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Green D.R. 2011. Means to an end: Apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  11. Green D.R., Kroemer G. 2004. The pathophysiology of mitochondrial cell death. Science. 305 (5684), 626–629.

    Article  CAS  PubMed  Google Scholar 

  12. Brustugun O.T., Fladmark K.E., Doskeland S.O., Orrenius S., Zhivotovsky B. 1998. Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2. Cell Death Differ. 5 (8), 660–668.

    Article  CAS  PubMed  Google Scholar 

  13. Kroemer G., Reed J.C. 2000. Mitochondrial control of cell death. Nat. Med. 6 (5), 513–519.

    Article  CAS  PubMed  Google Scholar 

  14. Belikova N.A., Vladimirov Y.A., Osipov A.N., Kapralov A.A., Tyurin V.A., Potapovich M.V., Basova L.V., Peterson J., Kurnikov I.V., Kagan V.E. 2006. Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry. 45 (15), 4998–5009.

    Article  CAS  PubMed  Google Scholar 

  15. Kagan V.E., Gleiss B., Tyurina Y.Y., Tyurin V.A., Elenstrom-Magnusson C., Liu S.X., Serinkan F.B., Arroyo A., Chandra J., Orrenius S., Fadeel B. 2002. A role for oxidative stress in apoptosis: Oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J. Immunol. 169 (1), 487–499.

    Article  CAS  PubMed  Google Scholar 

  16. Kagan V.E., Borisenko G.G., Serinkan B.F., Tyurina Y.Y., Tyurin V.A., Jiang J., Liu S.X., Shvedova A.A., Fabisiak J.P., Uthaisang W., Fadeel B. 2003. Appetizing rancidity of apoptotic cells for macrophages: Oxidation, externalization, and recognition of phosphatidylserine. Am. J. Physiol. Lung Cell Mol. Physiol. 285 (1), L1–17.

    Article  CAS  PubMed  Google Scholar 

  17. Kagan V.E., Borisenko G.G., Tyurina Y.Y., Tyurin V.A., Jiang J., Potapovich A.I., Kini V., Amoscato A.A., Fujii Y. 2004. Oxidative lipidomics of apoptosis: Redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic. Biol. Med.37 (12), 1963–1985.

    Article  CAS  PubMed  Google Scholar 

  18. Kagan V.E., Tyurin V.A., Jiang J., Tyurina Y.Y., Ritov V.B., Amoscato A.A., Osipov A.N., Belikova N.A., Kapralov A.A., Kini V. 2005. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1 (4), 223–232.

    Article  CAS  PubMed  Google Scholar 

  19. Kimelberg H.K., Papahadjopoulos D. 1971. Interactions of basic proteins with phospholipid membranes. Binding and changes in the sodium permeability of phosphatidylserine vesicles. J. Biol. Chem. 246 (4), 1142–1148.

    CAS  PubMed  Google Scholar 

  20. Brown L.R., Wuthrich K. 1977. A spin label study of lipid oxidation catalyzed by heme proteins. Biochim. Biophys. Acta. 464 (2), 356–369.

    Article  CAS  PubMed  Google Scholar 

  21. Brown L.R., Wuthrich K. 1977. NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles. Biochim. Biophys. Acta. 468 (3), 389–410.

    Article  CAS  PubMed  Google Scholar 

  22. Quinn P.J., Dawson R.M. 1969. Interactions of cytochrome c and [14C]-carboxymethylated cytochrome c with monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin. Biochem. J.115 (1), 65–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rytomaa M., Kinnunen P.K. 1994. Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J. Biol. Chem. 269 (3), 1770–1774.

    CAS  PubMed  Google Scholar 

  24. Rytomaa M., Kinnunen P.K. 1995. Reversibility of the binding of cytochrome c to liposomes. Implications for lipid–protein interactions. J. Biol. Chem. 270 (7), 3197–3202.

    Article  CAS  PubMed  Google Scholar 

  25. Sinibaldi F., Howes B.D., Piro M.C., Polticelli F., Bombelli C., Ferri T., Coletta M., Smulevich G., Santucci R. 2010. Extended cardiolipin anchorage to cytochrome c: A model for protein-mitochondrial membrane binding. J. Biol. Inorg. Chem.15 (5), 689–700.

    Article  CAS  PubMed  Google Scholar 

  26. Vladimirov Y.A., Proskurnina E.V., Izmailov D.Y., Novikov A.A., Brusnichkin A.V., Osipov A.N., Kagan V.E. 2006. Mechanism of activation of cytochrome C peroxidase activity by cardiolipin. Biochemistry (Mosc.). 71 (9), 989–997.

    Article  CAS  Google Scholar 

  27. Vladimirov Y.A., Proskurnina E.V., Izmajlov D.Y. 2011. Kinetic chemiluminescence as a method for study of free radical reactions. Biophysics (Mosc.). 56 (6), 1055–1062.

    Article  Google Scholar 

  28. Muenzner J., Pletneva E.V. 2014. Structural transformations of cytochrome c upon interaction with cardiolipin. Chem. Phys. Lipids. 179, 57–63.

    Article  CAS  PubMed  Google Scholar 

  29. Muenzner J., Toffey J.R., Hong Y., Pletneva E.V. 2013. Becoming a peroxidase: Cardiolipin-induced unfolding of cytochrome c.J. Phys. Chem. B.117 (42), 12878–12886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohammadyani D., Yanamala N., Samhan-Arias A.K., Kapralov A.A., Stepanov G., Nuar N., Planas-Iglesias J., Sanghera N., Kagan V.E., Klein-Seetharaman J. 2018. Structural characterization of cardiolipin-driven activation of cytochrome c into a peroxidase and membrane perturbation. Biochim. Biophys. Acta Biomembr. 1860 (5), 1057–1068.

  31. Vladimirov Y.A., Nol’ Y.T., Volkov V.V. 2011. Protein–lipid nanoparticles that determine whether cells will live or die. Crystallography Reports. 56 (4), 553–559.

    Article  CAS  Google Scholar 

  32. Vladimirov Y.A., Proskurnina E.V., Alekseev A.V. 2013. Molecular mechanisms of apoptosis. Structure of cytochrome c-cardiolipin complex. Biochemistry (Mosc.). 78 (10), 1086–1097.

    Article  CAS  Google Scholar 

  33. Proskurnina E.V., Proskurnin M.A., Alekseev A.V., Galimova V.R., Vladimirov Yu.A. 2018. Determination of the composition of the complex of cytochrome c with cardiolipin by means of spectrophotometry and dark-linse spectrometry. Tekhnologii zhivykh sistem (Rus.). 3, 27–32.

  34. Demin E.M., Proskurnina E.V., Vladimirov Y.A. 2008. Antioxidant effects of dihydroquercetin and rutin in peroxidase reactions catalyzed by cytochrome c.Moscow University Chemistry Bulletin. 63 (5), 297–302.

    Article  Google Scholar 

  35. Proskurnina E.V., Alekseev A.V., Demin E.M., Izmailov D.Y., Vladimirov Y.A. 2013. Cyt-CL complex: Peroxidase activity and role in lipid peroxidation. FEBS J.280 (SI Suppl.1), 264.

    Google Scholar 

  36. Vladimirov Y.A., Demin E.M., Proskurnina E.V., Osipov A.N. 2009. Lipoperoxide radical production during oxidation of cardiolipin in the complex with cytochrome c. Biochem. (Mosc.).Suppl. Series A: Membr. Cell Biol. 3 (4), 479–489.

    Google Scholar 

  37. Folch J., Lees M., Sloane Stanley G.H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226 (1), 497–509.

    CAS  PubMed  Google Scholar 

  38. Vikulina A.S., Alekseev A.V., Proskurnina E.V., Vladimirov Y.A. 2015. The complexs of cytochrome c with cardiolipin in non-polar environment. Biochemistry (Mosc.). 80 (10), 1298–1302.

    Article  CAS  Google Scholar 

  39. Vladimirov G.K., Vikulina A.S., Volodkin D.V., Vladimirov Y.A. 2018. Structure of the complex of cytochrome C with cardiolipin in non-polar environment. Chem. Phys. Lipids.214, 35–45

    Article  CAS  PubMed  Google Scholar 

  40. Vladimirov G.K., Remenshchikov V.E., Nesterova A.M., Volkov V.V., Vladimirov Y.A. 2019. Comparison of the size and properties of the cytochrome c/cardiolipin nanospheres in a sediment and non-polar medium. Biochemistry (Mosc.).84 (8), 923–30.

    Article  CAS  Google Scholar 

  41. Vladimirov Y.A., Sharov V.S., Driomina E.S., Reznitchenko A.V., Gashev S.B. 1995. Coumarin derivatives enhance the chemiluminescence accompanying lipid peroxidation. Free Radic. Biol. Med. 18 (4), 739–745.

    Article  CAS  PubMed  Google Scholar 

  42. Kapralov A.A., Yanamala N., Tyurina Y.Y., Castro L., Samhan-Arias A., Vladimirov Y.A., Maeda A., Weitz A.A., Peterson J., Mylnikov D., Demicheli V., Tortora V., Klein-Seetharaman J., Radi R., Kagan V.E. 2011. Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c/cardiolipin peroxidase complexes. Biochim. Biophys. Acta. 1808 (9), 2147–2155.

  43. Chance B. 1949. The properties of the enzyme–substrate compounds of horse-radish and lacto-peroxidase. Science. 109 (2826), 204–208.

    Article  CAS  PubMed  Google Scholar 

  44. Chance B., Higgins J. 1952. Peroxidase kinetics in coupled oxidation; an experimental and theoretical study. Arch. Biochem. Biophys. 41 (2), 432–441.

    Article  CAS  PubMed  Google Scholar 

  45. Furtmuller P.G., Jantschko W., Zederbauer M., Jakopitsch C., Arnhold J., Obinger C. 2004. Kinetics of interconversion of redox intermediates of lactoperoxidase, eosinophil peroxidase and myeloperoxidase. Jpn. J. Infect. Dis. 57 (5), S30–31.

    PubMed  Google Scholar 

  46. Hannun Y.A. 1997. Apoptosis and the dilemma of cancer chemotherapy. Blood. 89 (6), 1845–1853.

    Article  CAS  PubMed  Google Scholar 

  47. Ghobrial I.M., Witzig T.E., Adjei A.A. 2005. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin. 55 (3), 178–194.

    Article  PubMed  Google Scholar 

  48. Lopez J., Tait S. 2015. Mitochondrial apoptosis: Killing cancer using the enemy within. Br. J. Cancer. 112 (6), 957–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vladimirov Y.A., Sarisozen C., Vladimirov G.K., Filipczak N., Polimova A.M., Torchilin V.P. 2017. The cytotoxic action of cytochrome C/cardiolipin nanocomplex (Cyt-CL) on cancer cells in culture. Pharm. Res. 34 (6), 1264–1275.

    Article  CAS  PubMed  Google Scholar 

  50. Storrie B., Madden E.A. 1990. Isolation of subcellular organelles. Methods Enzymol. 182, 203–225.

    Article  CAS  PubMed  Google Scholar 

  51. Dodge J.T., Mitchell C., Hanahan D.J. 1963. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch. Biochem. Biophys. 100, 119–130.

    Article  CAS  PubMed  Google Scholar 

  52. Sozarukova M.M. 2017. Neutrophils and erythocytes as sources of free radicals in the blood and albumin as the target of their action. Extended Abstract of Cand. Sci Dissertation (Biol.). RNIMU, Moscow, 2017.

  53. Vladimirov Y.A., Arroyo A., Taylor J.M., Tyurina Y.Y., Matsura T., Tyurin V.A., Kagan V.E. 2000. Quinolizin-coumarins as physical enhancers of chemiluminescence during lipid peroxidation in live HL-60 cells. Arch. Biochem. Biophys. 384 (1), 154–162.

    Article  CAS  PubMed  Google Scholar 

  54. Kagan V.E., Bayir H.A., Belikova N.A., Kapralov O., Tyurina Y.Y., Tyurin V.A., Jiang J., Stoyanovsky D.A., Wipf P., Kochanek P.M., Greenberger J.S., Pitt B., Shvedova A.A., Borisenko G. 2009. Cytochrome c/cardiolipin relations in mitochondria: A kiss of death. Free Radic. Biol. Med. 46 (11), 1439–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vladimirov Y.A. 1996. Intrinsic (low-level) chemiluminescence. In: Free radicals. A practical approach. Eds Punchard N.A. Oxford, New York, Tokyo: Oxford University Press, p. 65–82.

    Google Scholar 

  56. Gryzunov Y.A., Arroyo A., Vigne J.L., Zhao Q., Tyurin V.A., Hubel C.A., Gandley R.E., Vladimirov Y.A., Taylor R.N., Kagan V.E. 2003. Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper–albumin complexes from antioxidants to prooxidants. Arch. Biochem. Biophys. 413 (1), 53–66.

    Article  CAS  PubMed  Google Scholar 

  57. Bergstrom C.L., Beales P.A., Lv Y., Vanderlick T.K., Groves J.T. 2013. Cytochrome c causes pore formation in cardiolipin-containing membranes. Proc. Natl. Acad. Sci. USA. 110 (16), 6269–6274.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Firsov A.M., Kotova E.A., Korepanova E.A., Osipov A.N., Antonenko Y.N. 2015. Peroxidative permeabilization of liposomes induced by cytochrome c/cardiolipin complex. Biochim. Biophys. Acta. 1848 (3), 767774.

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation (project no. 17-74-10248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Vladimirov.

Ethics declarations

The authors declare that they have no conflict of interests.

All experiments with animals were conducted in accordance with the regulations established by Order of the USSR Ministry of Health of 08/12/1977, no. 755, as well as European Communities Council Directive 1986 (86/609/EEC).

Additional information

Translated by G. Vladimirov

Abbreviations: AL, anionic lipids; C-334, coumarin 334; ChL, chemiluminescence; CytC, cytochrome c; Cyt-AL, cytochrome c complex with anionic lipids; CL, cardiolipin; Cyt-CL, complex cytochrome c with cardiolipin; Cyt-TOCL, a complex of cytochrome c with tetraoleoyl cardiolipin; LOO·, lipoperoxyl radical; LOOH, lipid hydroperoxides; PA, dioleoyl-phosphatidic acid; TOCL, tetraoleoyl cardiolipin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladimirov, G.K., Nesterova, A.M., Levkina, A.A. et al. The Dynamics of the Formation of Cytochrome c Complexes with Anionic Lipids and the Mechanism of the Production of Lipid Radicals Catalyzed by These Complexes. Biochem. Moscow Suppl. Ser. A 14, 232–241 (2020). https://doi.org/10.1134/S1990747820030137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820030137

Keywords:

Navigation