Skip to main content
Log in

Microdomain Organization of Internodal Myelin

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The orientation and ordering of the molecules of carotenoids and fatty acids of phospholipids in myelin of nerve fiber was investigated using Raman spectroscopy. A method for the quantitative description of the order of the molecules in myelin lipid bilayer has been developed. It was established that the difference in the distribution of the molecules of carotenoids and phospholipids is associated with the morphology of myelin and nerve fiber. The molecules of carotenoids are predominantly perpendicular to the surface of the lipid bilayer of myelin, while phospholipids are oriented at an angle of 45° to it. It is assumed that the microdomain organization of the internodal myelin is due to the presence of areas with high degree of saturation and order of the fatty acid chains of phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Trapp B.D., Kidd G. J. 2004. Structure of myelinated axon. In: Myelin biology and disorders. San Diego: Academic Press, p. 3–27.

    Google Scholar 

  2. Kirschner D.A., Hollingshead C.J. 1980. Processing for electron microscopy alters membrane structure and packing in myelin. J. Ultrastructure Res. 73 (2), 211–232.

    Article  CAS  Google Scholar 

  3. Suter U., Nave K.-A. 1999. Transgenic mouse models of CMT1A and HNPP. Ann. New York Acad. Sci. 883 (1), 247–253.

    Article  CAS  Google Scholar 

  4. Schmitt F.O., Bear R.S., Palmer K.J. 1941. X-ray diffraction studies on the structure of the nerve myelin sheath. J. Cell. Compar. Physiol. 18 (1), 31–42.

    Article  CAS  Google Scholar 

  5. Szalontai B., Bagyinka Cs., Horvath L.I. 1977. Changes in the raman spectrum of frog sciatic nerve during action potential propagation. Biochem. Biophys. Res. Comm. 76 (3), 660–665.

    Article  CAS  PubMed  Google Scholar 

  6. Maksimov G.V., Churin A.A., Paschenko V.Z., Rubin A.B. 1990. Raman spectroscopy of the ’potential sensor’ of potential-dependent channels. Gen. Physiol. Biophys. 9 (4), 353–360.

    CAS  PubMed  Google Scholar 

  7. Maksimov G.V., Musuralieva G.T., Churin A.A., Pashchenko V.Z. 1989. The influence of the protein-lipid interactions in the excitable membranes on the conformation of carotenoids. Biofizika (Rus.). 34 (3), 420–424.

    CAS  Google Scholar 

  8. Maximov G.V., Churin A.A., Pashchenko V.Z., Rubin A.B. 1985. Study of the nature of regulation of potential-dependent channels by Raman spectroscopy. Biofizika (Rus.). 30, (4), 620–624.

    Google Scholar 

  9. Verdiyan E., Bibineyshvili E., Kutuzov N., Maksimov G. 2015. Role of Schwann cell in regulation of myelin sheath properties during nerve fiber excitation and activation of purinergic receptors. GLIA Bilbao 2015: Abstracts Oral Presentations, Posters, Indexes. 63, E76–E469.

    Google Scholar 

  10. Bulygin F.V., Dracheva O.E., Kutuzov N.P., Lyaskovskii V.L., Maksimov G.V., Nikolaev Yu A. 2014. Determination of the metrological characteristics of the near-field scanning optical microscope in the study of biological objects. Measurement Techniques. 56 (10), 1173–1180.

    Article  Google Scholar 

  11. Sarycheva A.S., Semenova A.A., Polyakov A.Y., Kozmenkova A.Y., Grigorieva A.V., Goodilin E.A., Parshina E.Y., Brazhe N.A., Maksimov G.V. 2014. Ultrasonic-silver-rain preparation of SERS substrates. Materials Lett. 121, 66–69.

    Article  CAS  Google Scholar 

  12. Kutuzov N.P., Brazhe A.R., Maksimov G.V., Lyaskovskiy V.L. 2014. Orientational ordering of carotenoids in myelin membranes resolved by polarized Raman microspectroscopy. Biophys. J. 107 (4), 891–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kutuzov N.P., Brazhe A.R., Lyaskovskiy V.L., Maksimov G.V. 2015. Laser beam coupling into nerve fiber myelin allows one to assess its structural membrane properties. J. Biomed. Optics. 20 (5), 050501.

    Article  Google Scholar 

  14. Kutuzov N., Gulin A., Lyaskovskiy V., Natochenko N., Maksimov G. 2015. ATP-mediated compositional change in peripheral myelin membranes: A comparative Raman spectroscopy and time-of-flight secondary ion mass spectrometry study. PLoS ONE. 10 (11), e0142084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van de Ven M., Kattenberg M., van Ginkel G., Levine Y.K. 1984. Study of the orientational ordering of carotenoids in lipid bilayers by resonance-Raman spectroscopy. Biophys. J. 45 (6), 1203–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mishra N.N., Liu G.Y., Yeaman M.R., Nast C.C., Proctor R.A., McKinnell J., Bayer A.S. 2011. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrobial Agents Chemother. 55 (2), 526–531.

    Article  CAS  Google Scholar 

  17. Snyder R.G., Strauss H.L., Elliger C.A. 1982. Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J. Phys. Chem. 86 (26), 5145–5150.

    Article  CAS  Google Scholar 

  18. Cho Y., Kobayashi M., Tadokoro H. 1986. Raman band profiles and mobility of polymethylene chains. J. Chem. Phys. 84 (8), 4636–4642.

    Article  CAS  Google Scholar 

  19. Berestovskaya Y.Y., Gerasimenko L.M., Yusipovich A.I., Maksimov G.V., Rubin A.B., Levin G.G., Shutova V.V. 2011. New possibilities of studying microbial objects by laser interference microscopy. Biophysics. 56 (6), 1063–1068.

    Article  Google Scholar 

  20. Nobbs J.H., Bower D.I., Ward I.M. 1979. Comparison of polarized fluorescence with polarized raman and infrared dichroism measures of orientation in uniaxially drawn poly (ethylene terephthalate). J. Polymer Sci. Polymer Physics Edition. 17 (2), 259–272.

    Article  CAS  Google Scholar 

  21. Everall N., Chalmers J., Mills P. 1996. Use of polarized resonance Raman spectroscopy of a polyene probe, and FT-IR dichroism, to probe amorphous-phase orientation in uniaxially drawn poly(ethylene). Appl. Spectroscopy. 50 (10), 1229–1234.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation (project no. 19-79-30 062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Maksimov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the Bioethics committee of the Faculty of Biology, Lomonosov Moscow State University (no. 82-O of June 8, 2017).

Additional information

Translated by E. Puchkov

Abbreviations: SC, Schwann cell; LB, lipid bilayer; NSL, notches of Schmitt–Lanterman; RS, Raman spectroscopy; OPD LB, optical path difference of the light beam; FD, focal doublet; LIM, laser interference microscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, G.V., Kutuzov, N.P., Shutova, V.V. et al. Microdomain Organization of Internodal Myelin. Biochem. Moscow Suppl. Ser. A 13, 260–267 (2019). https://doi.org/10.1134/S1990747819030164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747819030164

Keywords:

Navigation