Skip to main content
Log in

Modeling of the Mechanism of the Electrical Transmembrane Potential Influence on the Hurst Exponents in the Sequence of Lifetimes of a Single Ion Channel

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

It is known from experimental studies that the Hurst exponent, which characterizes the degree of correlation of events in the sequence of channel lifetimes in the open and closed states, depends on the electrical transmembrane potential. However, the mechanism of this phenomenon remains unclear. In this study, we have constructed a model that enabled us to describe this phenomenon. Using the model, the dependencies of the Hurst exponent on the electrical transmembrane potential were calculated. It has been shown that the best agreement between theoretical and experimental data was observed when the dependence of the hydrophobic factor on the electrical transmembrane potential has been taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Varanda W.A., Liebovitch L.S., Figueiroa J.N., Nogueira R.A. 2000. Hurst analysis applied the study of single calcium-activated potassium channel kinetics. J. Theor. Biol. 206, 343–353.

    Article  CAS  PubMed  Google Scholar 

  2. Nogueira R.A., Varanda W.A., Liebovitch L.S. 1995. Hurst analysis in the study of ion current kinetics. Brasilian J. Med. Biol. 28, 491–496.

    CAS  Google Scholar 

  3. Kochetkov K.V., Kazachenko V.N., Aslanidi O.V., Chemeris N.K. Gapeev A.B. 1999. Non-Markovian gating of -activated -channels kidney cells Vero. Rescaled range analysis. J. Biol. Phys. 25, 211–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kochetkov K.V., Kazachenko V.N., Aslanidi O.V. 2001. Time correlation in ion channel gating. Rescaled range analysis. Biol. membrany (Rus.). 18, 51–66.

  5. Kazachenko V.N., Kochetkov K.V., Astashev M.E., Grinevich A.A. 2004. Fractal properties of the gating of potential-dependent channels in neurons of L. stagnalis. Biofizika (Rus.). 49, 852–865.

    CAS  Google Scholar 

  6. Kazachenko V. N., Kochetkov K.V., Aslanidi O.V., Grinevich A.A. 2001. Study of fractal properties of single ionic channel gating mechanism by the fast Fourier transform. Biofizika (Rus.). 46, 1062–1070.

    CAS  Google Scholar 

  7. Kochetkov, K.V., Kazachenko, V.N., Aslanidi, O.V. 2003. Employment of the wavelet transformation for analysis of single ion channel activity. Biol. membrany (Rus.). 20, 359–368.

  8. Grinevich A.A., Astashev M.E. 2010. Fraktal’nye svoistva ionnykh kanalov (Fractal properties of ion channels). Saarbrucken: LAP Lambert Acad. Publ.

  9. Liebovitch L.S., Fischbarg J., Koniarek J. 1987. Ion channel kinetics: A model based on fractal scaling rather than multistate Markov process. Math. Biosci. 84, 37–68.

    Article  Google Scholar 

  10. Liebovitch L.S., Lullivan J.M. 1987. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys. J. 52, 979–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Varanda W.A., Liebovitch L.S., Figueiroa J.N., Nogueira R.A. 2000. Hurst analysis applied the study of single calcium-activated potassium channel kinetics. J. Theor. Biol. 206, 343–353.

    Article  CAS  PubMed  Google Scholar 

  12. Moezzi B., Iannella N., McDonnell M.D. 2016. Ion channel noise can explain firing correlation in auditory nerves. J. Comput. Neurosci. 41, 193–206.

    Article  PubMed  Google Scholar 

  13. Moezzi B., Iannella N., McDonnell M.D. 2014. Modeling the influence of short term depression in vesicle release and stochastic calcium channel gating on auditory nerve spontaneous firing statistics. Front. Comput. Neurosci. 8, 163.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Colquhoun D., Hawkes A.G. 1977. Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Proc. R. Soc. London Ser. B. 199, 231–262.

    Article  CAS  Google Scholar 

  15. Croxton T.L. 1988. A model of the gating of ion channels. Biochim. Biophys Acta. 946, 19–24.

    Article  CAS  PubMed  Google Scholar 

  16. Horn R. 1987. Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylholine receptor channel. Biophys. J. 51, 255–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McManus O.B., Magleby K.L. 1994. Accounting for the Ca2+-dependent kinetics of single large-conductance Ca2+-activated K+-channels in rat skeletal muscle. J. Physiol. (London). 443, 739–777.

    Article  Google Scholar 

  18. Kazachenko V. N., Kochetkov K.V., 2003. Maxi Ca2+-activated K+ channels: Structure and gating. Biol. membrany (Rus.). 20, 99–120.

  19. Liebovitch L.S. 1989. Analysis of fractal ion channel gating kinetics: Kinetics rates energy levels and activation energies. Math. Biosci. 93, 97–115.

    Article  CAS  PubMed  Google Scholar 

  20. Liebovitch L.S., Toth T.I. 1990. Fractal activity in cell membrane ion channels. Math. Approach. Cardiac. Arrythmias. 591, 375–391.

    CAS  Google Scholar 

  21. Millhauser G.L., Salpeter E.E., Oswald R.E. 1988. Diffusion models of ion channel gating and the origin of power-law distributions from single channel recording. Proc. Natl. Acad. Sci. USA. 85, 1503–1507.

    Article  CAS  PubMed  Google Scholar 

  22. Oswald R.E., Millhause G.L., Carter A.A. 1991. Diffusion model in ion channel gating. Extension to agonist-activated ion channels. Biopys. J. 59, 1136–1142.

    Article  CAS  Google Scholar 

  23. Liebovitch L.S., Yang W. 1997. Transition from persistent to antipersistent correlation in biological systems. Phys. Rev. E. 56, 4557–4566.

    Article  CAS  Google Scholar 

  24. Kurzynski M., Palacz K., Chelminiak P. 1998. Time course of reactions controlled and gated by intramolecular dynamics of proteins: Predictions of the model of random walk on fractal lattices. Proc. Natl. Acad. Sci. USA. 95, 11685–11690.

    Article  CAS  PubMed  Google Scholar 

  25. Liebovitch L.S., Toth T.I. 1991. A model of ionic channel kinetics using deterministic chaotic rather than stochastic processes. J. Theor. Biol. 148, 243–267.

    Article  CAS  PubMed  Google Scholar 

  26. Liebovitch L.S., Czegledy F. 1992. A model of ion channel kinetics based on deterministic motion in a potential with two local minima. Ann. Biomed. Engr. 84, 37–68.

    Google Scholar 

  27. Cavalcanti S., Fontanazzi F. 1999. Deterministic model of ion channel flipping with fractal scaling of kinetics rates. Ann. Biomed. Engr. 27, 682–695.

    Article  CAS  Google Scholar 

  28. Liebovitch L.S., Krekora P. 2002. The physical basis of ion channel kinetics: The impotance of dynamics. Proc. Inst. Math. Appl. Univ. Minnessota. 129, 27–52.

    CAS  Google Scholar 

  29. Jensen M.O., Borhani D.W., Lindorff-Larsen K., Maragakis P., Jogini V., Eastwood M.P., Dror R.O., Shaw D.E. 2010. Principles of conduction and hydrophobic gating in K+ channels. Proc. Natl. Acad. Sci. USA. 107 (13), 5833–5838.

    Article  PubMed  Google Scholar 

  30. Jensen M.O., Jogini V., Borhani D.W., Leffler A.E., Dror R.O., Shaw D.E. 2012. Mechanism of voltage gating in potassium channels. Science. 336 (6078), 229–233.

    Article  CAS  PubMed  Google Scholar 

  31. Sigg D. 2014. Modeling ion channels: Past, present, and future. J. Gen. Physiol. 144 (1), 7–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grinevich A.A., Astashev M.E., Kazachenko V.N. 2007. Model of multifractal gating of single ionic channels in biological membranes. Biochem. (Moscow) Suppl. Ser. A. 1, 253–269.

    Google Scholar 

  33. Gazzarrini S., Severino M., Lombardi M., Morandi M., DiFrancesco D., Etten J.L.V., Thiel G., Moroni A. 2003. The viral potassium channel Kcv: structural and functional features. FEBS Letters. 552 (1), 12–16.

  34. Doyle D.A., Morais Cabral J., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science. 280 (5360), 69–77.

  35. Peng C.-K., Buldyrev S.V., Halvin S., Simons M., Stanley H.E., Goldberger A.L. 1994. Mosaic organization of DNA nucleotides. Phys. Rev. 49, 1685–1689.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Grinevich.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinevich, A.A., Astashev, M.E. Modeling of the Mechanism of the Electrical Transmembrane Potential Influence on the Hurst Exponents in the Sequence of Lifetimes of a Single Ion Channel. Biochem. Moscow Suppl. Ser. A 13, 138–146 (2019). https://doi.org/10.1134/S1990747818060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818060053

Keywords:

Navigation