Skip to main content
Log in

Two Subtypes of Nicotinic Acetylcholine Receptors in Lymnaea stagnalis Neurons Control Chloride Conductance

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Giant neurons of the mollusc Lymnaea stagnalis contain heterogeneous population of nicotinic acetylcholine receptors (nAChRs) according to their relative sensitivity to antagonists. All these receptors are involved in the total response to acetylcholine (ACh). To evaluate activity of different pharmacological agents correctly it is necessary to know ionic selectivity of nAChRs which participate in transmembrane ionic current. In this work we studied the influence of ionic composition of the external and intracellular solutions on the current amplitude and current–voltage relation under the action of ACh or other nAChR agonists on the identified neurons of the left and right parietal ganglia of Lymnaea. After non-permeable cation N-methyl-D-glucamine was completely substituted for external Na+ ions there were no changes in the current characteristics. After a 10-fold decrease in Cl–concentration in the external solution there was a considerable shift of the current–voltage curve to the right, outward currents at the holding potential (Vh) up to 30 mV were not observed. On the contrary, a 10-fold decrease of Cl concentration in the intracellular solution led to a shift of the current–voltage curve to hyperpolarizing direction, the reversal potential shift was in the average –42 mV. When ACh and nicotinic agonists with higher selectivity towards vertebrate α7 neuronal nAChR type and one of the two subtypes of Lymnaea nAChRs were compared, no differences in changes of ionic current characteristics were found. Neurons with distinct relative fraction of one or another nAChR subtype reacted to Cl concentration change in the same way. Our results support earlier data on Cl mechanism of Lymnaea neuron responses to ACh and evidence identical ionic selectivity of the two nAChR subtypes in identified neurons tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACh:

acetylcholine

Chol:

choline

[Cl]in and [Cl]o :

Clconcentrations in the intracellular and external solutions, respectively

Cyt:

cytisine

ECl :

chloride equilibrium potential

Er :

reversal potential

ΔEr :

a shift of reversal potential

ImI:

α-conotoxin ImI

LP1,2,3 and RPV2,3:

identified giant neurons from the left and right (ventral side) parietal ganglia of L. stagnalis

nAChR:

nicotinic acetylcholine receptor

nAChR-Ls1:

Lymnaea nicotinic receptors with high sensitivity to ImI, relatively low sensitivity to ACh and fast desensitization to ACh

nAChR-Ls2:

Lymnaea nicotinic receptors with low sensitivity to ImI, relatively high sensitivity to ACh, and slow desensitization to ACh

NMDG:

N-methyl-D-glucamine

V h :

holding potential

Rin :

intracellular solution

Ro :

external solution

References

  1. Galzi J. L. Devillers-Thiery A., Hussy N., Bertrand S., Changeux J. P., Bertrand D. 1992. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature, 359, 500–505.

    Article  PubMed  CAS  Google Scholar 

  2. Karlin A. 2002. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102–114.

    Article  PubMed  CAS  Google Scholar 

  3. Jensen M. L., Schousboe A., Ahring P. K. 2005. Charge selectivity of the Cys-loop family of ligand-gated ion channels. J. Neurochem. 92, 217–225.

    Article  PubMed  CAS  Google Scholar 

  4. Dani J. A., Bertrand D. 2007. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699–729.

    Article  PubMed  CAS  Google Scholar 

  5. Kehoe J. S. 1972. Ionic mechanisms of a two-component cholinergic inhibition in Aplysia neurones. J. Physiol. (London) 225, 85–114.

    Article  CAS  Google Scholar 

  6. Ger B. A., Zeimal E. V. 1976. Two kinds of cholinoreceptors on the membrane of the completely isolated identified Planorbarius corneus neurone. Nature, 259, 681–684.

    Article  PubMed  CAS  Google Scholar 

  7. Ikemoto Y., Ishizuka S., Ono K., Akaike N. 1988. Kinetic analysis of acetylcholine-induced chloride current in isolated snail neurons. Cell. Mol. Neurobiol. 8, 293–305.

    Article  PubMed  CAS  Google Scholar 

  8. Kehoe JS., MacIntosh J. M. 1998. Two distinct nicotinic receptors, one pharmacologically similar to the vertebrate α7-containing receptor, mediate Cl currents in Aplysia neurons. J. Neurosci. 18, 8198–8213.

    Article  PubMed  CAS  Google Scholar 

  9. Jones A. K., Sattelle D. B. 2003. Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans. BioEssays. 26, 39–49.

    Article  CAS  Google Scholar 

  10. Putrenko I., Zakikhani M., Dent J. A. 2005. A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans. J. Biol. Chem. 280, 6392–6398.

    Article  PubMed  CAS  Google Scholar 

  11. Kislov A. N., Kazachenko V. N. 1974. Ionic currents of activated cholinoreceptive membrane of isolated Lymnaea neurons. In: Biophysics of living cells. Frank G. M. Ed., Pushchino, no. 4, part 2, pp. 39–44.

    Google Scholar 

  12. Chemeris N. K., Kazachenko V. N., Kislov A. N., Kurchikov A. L. 1981. Inhibition of acetylcholine responses by intracellular calcium in Lymnaea stagnalis neurons. J. Physiol. (London) 323, 1–19.

    Article  Google Scholar 

  13. van Nierop P., Keramidas A., Bertrand S., van Minnen J., Gouwenberg Y., Bertrand D., Smit A. B. 2005. Identification of molluscan nicotinic receptor (nAChR) subunits involved in formation of cation-and anion-selective nAChRs. J. Neurosci. 25, 10617–10626.

    Article  PubMed  CAS  Google Scholar 

  14. van Nierop P., Bertrand S., Munno D. W., Gouwenberg Y., van Minnen J., Spafford J. D., Syed N. I., Bertrand D., Smit A. B. 2006. Identification and functional expression of a family of nicotinic acetylcholine receptor subunits in the central nervous system of the mollusc Lymnaea stagnalis. J. Biol. Chem. 281, 1680–1691.

    Article  PubMed  CAS  Google Scholar 

  15. Vulfius C. A., Krasts I. V., Utkin Yu. N., Tsetlin V. I. 2001. Nicotinic receptors in Lymnaea stagnalis neurons are blocked by neurotoxins from cobra venoms. Neurosci. Lett. 309, 189–192.

    Article  PubMed  CAS  Google Scholar 

  16. Vulfius C. A., Tumina O. B., Kasheverov I. E., Utkin Yu. N., Tsetlin V. I. 2005. Diversity of nicotinic receptors mediating Cl–current in Lymnaea neurons distinguished with specific agonists and antagonist. Neurosci. Lett. 373, 232–236.

    Article  PubMed  CAS  Google Scholar 

  17. Vulfius C. A., Kasheverov I. E., Starkov V. G., Osipov A. V., Andreeva T. V., Filkin S. Yu., Gorbacheva E. V., Astashev M. E., Tsetlin V. I., Utkin Yu. N. 2014. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2. PLoS One. doi 10. 1371/journal. pone. 0115428

    Google Scholar 

  18. Benjamin P. R., Ings C. T. 1972. Golgi–Cox studies on the central nervous system of a gastropod mollusc. Z. Zellforsch. 128, 564–582.

    Article  PubMed  CAS  Google Scholar 

  19. Kostyuk P. G., Kryshtal O. A., Pidoplichko V. I. 1981. Intracellular perfusion. J. Neurosci. Meth. 4, 201–210.

    Article  CAS  Google Scholar 

  20. Kazachenko V. N., Kislov A. N., Veprintsev B. N. 1979. Cholinoreceptive membrane inactivation by the depolarization of Lymnaea stagnalis neurons. Comp. Biochem. Physiol. 63C, 61–66.

    Google Scholar 

  21. Séguéla P., Wadiche J., Dineley-Miller K., Dani J. A., Patrick J. W. 1993. Molecular cloning, functional properties, and distribution of rat brain α7: A nicotinic cationic channel highly permeable to calcium. J. Neurosci. 13, 596–604.

    Article  PubMed  Google Scholar 

  22. Castro N. G., Albuquerque E. X. 1995. The α-bungarotoxin-sensitive hippocampal nicotinic acetylcholine receptor has a high calcium permeability. Biophys. J. 68, 516–524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Vulfius.

Additional information

Original Russian Text © E.V. Gorbacheva, V.S. Ershova, M.E. Astashev, C.A. Vulfius, 2018, published in Biologicheskie Membrany, 2018, Vol. 35, No. 4, pp. 289–296.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbacheva, E.V., Ershova, V.S., Astashev, M.E. et al. Two Subtypes of Nicotinic Acetylcholine Receptors in Lymnaea stagnalis Neurons Control Chloride Conductance. Biochem. Moscow Suppl. Ser. A 12, 261–267 (2018). https://doi.org/10.1134/S1990747818030042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818030042

Keywords

Navigation