Skip to main content
Log in

Keap1/Nrf2/ARE System Inducers Do Not Increase the Resistance of the Heart to Prolonged Ischemia/Reperfusion

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Oxidative stress acts as an important mechanism of myocardial damage during ischemia/reperfusion. To consider the possibility of restoring the redox balance with the help of “indirect” antioxidant effects, the cardioprotective effect of inducers of the Keap1/Nrf2/ARE system was studied when modeling prolonged ischemia/reperfusion in vivo. We used the original synthetic hydrophilic monophenol sodium 3-(3'-tert-butyl-4'-hydroxyphenyl) propylthiosulfonate (TS-13) and reference drug tert-butylhydroquinone (tBHQ). Male Wistar rats received 100 mg/kg of TS-13 solution (with drinking water) or tBHQ (intraperitoneally) daily for 7 days, while animals of the comparison groups received the corresponding solvents. Local ischemia (45 min, occlusion of the left coronary artery) and reperfusion (120 min) of the heart were modeled 1 day after the last drug administration in vivo. During the entire period of ischemia and during reperfusion, an ECG was recorded; at the end of reperfusion, the heart was removed and hypoperfusion and necrosis zones were determined. Changes in the expression of Nfe2l2, Nqo1, hmox1, Gstp1, Rela, and Nfkb2 gene mRNA in myocardial tissue were determined by TaqMan real-time PCR. It was found that the groups of rats treated with TS-13 and tBHQ did not differ from the corresponding control groups in terms of the size of the necrosis zone and the number of rhythm disturbances. Preliminary administration of tBHQ to animals did not change the expression of the studied genes in heart tissue after prolonged ischemia/reperfusion. The administration of TS-13 was accompanied by an increase in the content of transcripts of the gene encoding Nrf2 (by 7.64 times) and Nrf2-driven genes: Nqo1 (6.46 times) and Hmox1 (3.63 times); Gstp1, Rela, and Nfkb2 gene expression did not differ from the corresponding values of the control group; compared to animals treated with tBHQ, Nfe2l2, Nqo1, Hmox1, Rela, Nfkb2 gene expression was 16.23, 4.44, 2.68, 3.17, and 2.64 times larger, respectively. The results obtained cast doubt on the therapeutic significance of the induction of the Keap1/Nrf2/ARE system during prolonged ischemia/reperfusion of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Chen, Y., Zhang, X., Yang, Y., Zhang, L., Cui, L., Zhang, C., Chen, R., Xie, Y., He, J., and He, W., Tert-butylhydroquinone enhanced angiogenesis and astrocyte activation by activating nuclear factor-E2-related factor 2/heme oxygenase-1 after focal cerebral ischemia in mice, Microvasc. Res., 2019, vol. 126, p. 103891. https://doi.org/10.1016/j.mvr.2019.103891

    Article  CAS  PubMed  Google Scholar 

  2. Chen, Q. M., Nrf2 for cardiac protection: pharmacological options against oxidative stress, Trends Pharmacol. Sci., 2021, vol. 42, p. 729. https://doi.org/10.1016/j.tips.2021.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fei, L., Jingyuan, X., Fangte, L., Huijun, D., Liu, Y., Ren, J., Jinyuan, L., and Linghui, P., Preconditioning with rHMGB1 ameliorates lung ischemia-reperfusion injury by inhibiting alveolar macrophage pyroptosis via the Keap1/Nrf2/HO-1 signaling pathway, J. Transl. Med. 2020, vol. 18, p. 301. https://doi.org/10.1186/s12967-020-02467-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gainutdinov, P.I., Kozhin, P.M., Chechushkov, A.V., Martinovich, G.G., Kholshin, S.V., Kandalintseva, N.V., Zenkov, N.K., and Menshchikova, E.B., Inverse relationship between the antioxidant activity of structurally related synthetic monophenols and their toxicity in tumor cells, Sib. Nauchn. Med. Zh., 2018, vol. 38, p. 22. https://doi.org/10.15372/SSMJ20180104

    Article  Google Scholar 

  5. Goszcz, K., Deakin, S.J., Duthi, G.G., Stewart, D., Leslie, S.J., and Megson, I.L., Antioxidants in cardiovascular terapy: panacea or false hope?, Front. Cardiovasc. Med., 2015, vol. 2, p. 29. https://doi.org/10.3389/fcvm.2015.00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guerrero-Beltran, C.E., Tapia, E., Sanchez-Gonzalez, D.J., Martinez-Martinez, C.M., Cristobal-Garcia, M., and Pedraza-Chaverri, J., Tert-butylhydroquinone pretreatment protects kidney from ischemia-reperfusion injury, J. Nephrol., 2012, vol. 25, p. 84. https://doi.org/10.5301/JN.2011.8345

    Article  CAS  PubMed  Google Scholar 

  7. Guha, S. and Roy, S., Enhanced expression of SLC4A11 by tert-butylhydroquinone is mediated by direct binding of Nrf2 to the promoter of SLC4A,11., Free Radical Biol. Med., 2021, vol. 167, pp. 299–306. https://doi.org/10.1016/j.freeradbiomed.2021.03.006

    Article  CAS  Google Scholar 

  8. Jayakumar, D., Narasimhan, K.K.S., and Periandavan, K., Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: from health to disease, J. Trace Elem. Med. B-iol., 2021, vol. 69, p. 126882. https://doi.org/10.1016/j.jtemb.2021.126882

    Article  CAS  Google Scholar 

  9. Krylatov, A.V., Maslov, L.N., Voronkov, N.S., Boshchenko, A.A., Popov, S.V., Gomez, L., Wang, H., Jaggi, A.S. and Downey, J.M., Reactive oxygen species as intracellular signaling molecules in the cardiovascular system, Curr. Cardiol. Rev., 2018, vol. 14, p. 290. https://doi.org/10.2174/1573403X14666180702152436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lacher, S.E., Lee, J.S., Wang, X., Campbell, M.R., Bell, D.A., and Slattery, M., Beyond antioxidant genes in the ancient Nrf2 regulatory network, Free Radical Biol. Med., 2015, vol. 88, part B, p. 452. https://doi.org/10.1016/j.freeradbiomed.2015.06.044

  11. Lankin, V.Z., Tikhaze, A.K., and Belenkov, Yu.N., Free radical processes in diseases of the cardiovascular system, Kardiologiya, 2000, vol. 40, p. 48.

    Google Scholar 

  12. Lankin, V.Z., Tikhaze, A.K., and Belenkov, Yu.N., Antioxidants in complex therapy of atherosclerosis: pro et contra, Kardiologiya, 2004, vol. 44, p. 72.

    CAS  PubMed  Google Scholar 

  13. Maslov, L.N., Mukhomedzyanov, A.V., Tsibulnikov, S.Y., Suleiman, M.S., Khaliulin, I., and Oeltgen, P.R., Activation of peripheral delta2-opioid receptor prevents reperfusion heart injury, Eur. J. Pharmacol., 2021, vol. 907, p. 174302. https://doi.org/10.1016/j.ejphar.2021.174302

    Article  CAS  PubMed  Google Scholar 

  14. Menshchikova, E., Tkachev, V., Lemza, A., Sharkova, T., Kandalintseva, N., Vavilin, V., Safronova, O., and Zenkov, N., Water-soluble phenol TS-13 combats acute but not chronic inflammation, Inflamm. Res., 2014, vol. 63, p. 729. https://doi.org/10.1007/s00011-014-0746-0

    Article  CAS  PubMed  Google Scholar 

  15. Menshchikova, E.B., Chechushkov, A.V., Kozhin, P.M., Kholshin, S.V., Kandalintseva, N.V., Martinovich, G.G., and Zenkov, N.K., Activation of autophagy and Nrf2 signaling in human breast adenocarcinoma MCF-7 cells by novel monophenolic antioxidants, Cell Tissue Biol., 2019, vol. 13, p. 85. https://doi.org/10.1134/S1990519X1902007X

    Article  Google Scholar 

  16. Menshchikova, E.B., Kozhin, P.M., Chechushkov, A.V., Khrapova, M.V., and Zenkov, N.K., The oral delivery of water-soluble phenol TS-13 ameliorates granuloma formation in an in vivo model of tuberculous granulomatous inflammation, Oxid. Med. Cell. Longev., 2021, vol. 2021, p. 6652775. https://doi.org/10.1155/2021/6652775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neckar, J., Ostadal, B., and Kolar, F., Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery, Physiol. Res., 2004, vol. 53, p. 621.

    CAS  PubMed  Google Scholar 

  18. Oleynik, A.S., Kuprina, T.S., Pevneva, N.Y., Markov, A.F., Kandalintseva, N.V., Prosenko, A.E., and Grigoriev, I.A., Synthesis and antioxidant properties of sodium S-[3-(hydroxyaryl)propyl] thiosulfates and [3-(hydroxyaryl)propane]-1-sulfonates, Russ. Chem. Bull., 2007, vol. 58, p. 1135. https://doi.org/10.1007/s11172-007-0172-3

    Article  CAS  Google Scholar 

  19. Shah, A.K. and Dhalla, N.S., Effectiveness of some vitamins in the prevention of cardiovascular disease: a narrative review, Front. Physiol., 2021, vol. 12, p. 729255. https://doi.org/10.3389/fphys.2021.729255

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shen, Y., Liu, X., Shi, J., and Wu, X., Involvement of Nrf2 in myocardial ischemia and reperfusion injury, Int. J. Biol. Macromol., 2019, vol. 125, p. 496. https://doi.org/10.1016/j.ijbiomac.2018.11.190

    Article  CAS  PubMed  Google Scholar 

  21. Silva-Palacios, A., Ostolga-Chavarria, M., Buelna-Chontal, M., Garibay, C., Hernandez-Resendiz, S., Rol-dan, F.J., Flores, P.L., Luna-Lopez, A., Konigsberg, M., and Zazueta, C., 3-NP-induced Huntington’s-like disease impairs Nrf2 activation without loss of cardiac function in aged rats, Exp. Gerontol., 2017, vol. 96, p. 89. https://doi.org/10.1016/j.exger.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  22. Steinberg, D., Low density lipoprotein oxidation and its pathobiological significance, J. Biol. Chem., 1997, vol. 272, p. 20963.

    Article  CAS  PubMed  Google Scholar 

  23. Sussan, T.E., Jun, J., Thimmulappa, R., Bedja, D., Antero, M., Gabrielson, K. L., Polotsky, V.Y., and Biswal, S., Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice, PLoS One, 2008, vol. 3, p. e3791. https://doi.org/10.1371/journal.pone.0003791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ucar, B.I., Ucar, G., Saha, S., Buttari, B., Profumo, E., and Saso, L., Pharmacological protection against ischemia-reperfusion injury by regulating the Nrf2-Keap1-ARE signaling pathway, Antioxidants (Basel), 2021, vol. 10, p. 823. https://doi.org/10.3390/antiox10060823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vashi, R. and Patel, B. M., NRF2 in cardiovascular diseases: a ray of hope!, J. Cardiovasc. Transl. Res., 2021, vol. 14, p. 573. https://doi.org/10.1007/s12265-020-10083-8

    Article  PubMed  Google Scholar 

  26. Wang, W. and Kang, P.M., Oxidative stress and antioxidant treatments in cardiovascular diseases, Antioxidants (Basel), 2020, vol. 9, p. 1292. https://doi.org/10.3390/antiox9121292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiao, C., Xia, M.L., Wang, J., Zhou, X.R., Lou, Y.Y., Tang, L.H., Zhang, F.J., Yang, J.T., and Qian, L.B., Luteolin attenuates cardiac ischemia/reperfusion injury in diabetic rats by modulating Nrf2 antioxidative function, Oxid. Med. Cell. Longev., 2019, vol. 2019, p. 2719252. https://doi.org/10.1155/2019/2719252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeng, X.P., Li, X.J., Zhang, Q.Y., Liu, Q.W., Li, L., Xiong, Y., He, C.X., Wang, Y.F., and Ye, Q.F., Tert-butylhydroquinone protects liver against ischemia/reperfusion injury in rats through Nrf2-activating anti-oxidative activity, Transplant. Proc., 2017, vol. 49, p. 366. https://doi.org/10.1016/j.transproceed.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  29. Zenkov, N.K., Menshchikova, E.B., Kandalintseva, N.V., Oleynik, A.S., Prosenko, A.E., Gusachenko, O.N., Shklyaeva, O.A., Vavilin, V.A., and Lyakhovich, V.V., Antioxidant and antiinflammatory activity of new water-soluble sulfur-containing phenolic compounds, Biochemistry (Moscow). 2007, vol. 72, p. 644. https://doi.org/10.1134/S0006297907060077

    Article  CAS  PubMed  Google Scholar 

  30. Zenkov, N.K., Menshchikova, E.B., and Tkachev, V.O., Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target, Biochemistry (Moscow), 2013, vol. 78, p. 19. https://doi.org/10.1134/S0006297913010033

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the “Modern Optical Systems” and “Proteomic Analysis” Centers for Collective Use supported by funding from the Russian Ministry of Education and Science, agreement no. 075-15-2021-691.

Funding

The work was carried out according to state order no. АААА-А20-120013090021-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Menshchikova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. The care of experimental animals and their maintenance in vivarium conditions were standard and met the requirements of “Sanitary Rules for the Arrangement, Equipment, and Maintenance of Vivariums” no. 1045-73 of June 4, 1973, as well as no. 1179 of October 10, 1983, of the Ministry of Health of the Soviet Union; no. 267 of June 19, 2003, of the Ministry of Health of the Russian Federation; “Rules for the Treatment, Maintenance, Anesthesia and Killing of Experimental Animals” approved by the Ministry of Health of the Soviet Union (1977) and the Ministry of Health of the Russian Soviet Federal Socialist Republic (1977); the principles of the European Convention (Strasbourg, 1986); and the Helsinki Declaration of the World Medical Association for the Humane Treatment of Animals (1996).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhin, P.M., Sementsov, A.S., Khrapov, S.E. et al. Keap1/Nrf2/ARE System Inducers Do Not Increase the Resistance of the Heart to Prolonged Ischemia/Reperfusion. Cell Tiss. Biol. 17, 428–435 (2023). https://doi.org/10.1134/S1990519X23040028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23040028

Keywords:

Navigation