Skip to main content
Log in

Talin: Structural and Functional Relationships

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Interaction of the extracellular matrix (ECM) with the cell cytoskeleton is realized via integrin receptors. Adhesion structures formed in the cell after the ECM binding with integrins recruit talin molecules. They are involved both in the regulation of the activity of integrin receptors and binding of these receptors with the actin cytoskeleton. Talin is an adapter protein that contains the head domain, which is an atypical FERM domain, and rod domain, consisting of coiled bundles constructed of four or five α-helices. The pattern of α-helices packing in bundles determines their resistance to tensile forces and their ability to stretch. This review focuses on identifying the relationship between the structural organization of talin and distribution of functions between the head and rod domains. The spatial orientation of subdomains (F0, F1, F2, F3) in the head domain provides accessibility of binding sites in these subdomains for effector molecules and rapid transformation of the domain itself upon talin activation. The linear arrangement of helical bundles (R1–R13) in the rod domain with a predominance of four helical bundles at the N-end of the domain and five helical bundles at its C-end determines: 1) effective interbundle interaction during the formation of an inactive (autoinhibited) form of the talin dimer and 2) the possibility of modifying individual bundle spiralization under the action of physical stimuli. As a result, binding sites with various proteins burried in helical bundles of the talin rod domain are revealed. This means that the N-terminal site of the talin molecule (head domain) transforms some biochemical signals into others. The C-terminal part of the molecule (rod domain) converts physical stimuli into biochemical or physiological signals that regulate the cellular response. The review also considers the interaction of talin with various compounds at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Anthis, N.J., Wegener, K.L., Feng, Y., Kim, C., Goult, B.T., Lowe, E.D., Vakonakis, I., Bate, N., Critchley, D.R., Ginsberg, M.H., and Campbell, I.D., The structure of an integrin/talin complex reveals the basis of inside-out signal transduction, EMBO J., 2009, vol. 28, p. 3623. Atherton, P., Stutchbury, B., Wang, D.Y., Jethwa, D., Tsang, R., Meiler-Rodriguez, E., Wang, P., Bate, N., Zent, R., Barsukov, I.L., Goult, B.T., Critchley, D.R., and Ballestrem, C., Vinculin controls talin engagement with the actomyosin machinery, Nat. Commun., 2015, vol. 6, p. 10038. https://doi.org/10.1038/ncomms10038

  2. Banno, A., Goult, B.T., Lee, H., Bate, N., Critchley, D.R., and Ginsberg, M.H., Subcellular localization of talin is regulated by inter-domain interactions, J. Biol. Chem., 2012, vol. 287, p. 13799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Barczyk, M., Carracedo, S., and Gullberg, D., Integrins, Cell Tissue Res, 2010, vol. 339, p. 269.

    Article  PubMed  CAS  Google Scholar 

  4. Beaty, B.T., Wang, Y., Bravo-Cordero, J.J., Sharma, V.P., Miskolci, V., Hodgson, L., and Condeelis, J., Talin regulates moesin-NHE-1 recruitment to invadopodia and promotes mammary tumor metastasis, J. Cell Biol., 2014, vol. 205, p. 737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Berrier, A.L. and Yamada, K.M., Cell-matrix adhesion, J. Cell Physiol., 2007, vol. 213, p. 565.

    Article  PubMed  CAS  Google Scholar 

  6. Bouaouina, M., Lad, Y., and Calderwood, D.A., The N-terminal domains of talin cooperate with the phosphotyrosine binding-like domain to activate β1 and β3 integrins, J. Biol. Chem., 2008, vol. 283, p. 6118.

    Article  PubMed  CAS  Google Scholar 

  7. Bouchet, B.P., Gough, R.E., Ammon, Y.C., van, der, Willige, D., Post, H., Jacquemet, G., Altelaar, A.F.M., Heck, A.J.R., Goult, B.T., and Akhmanova, A., Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions, eLIFE, 2016, vol. 5. e18124. https://doi.org/10.7554/eLife.18124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bunch, T.A., Integrin AIIbβ3 activation in Chinese hamster ovary cells and platelets increases clustering rather than affinity, J. Biol. Chem., 2010, vol. 285, p. 1841.

    Article  PubMed  CAS  Google Scholar 

  9. Calderwood, D.A., Yan, B., de Pereda, J.M., Garcia-Alvarez, B., Fujioka, Y., Liddington, R.C., and Ginsberg, M.H., The phosphotyrosine binding-like domain of talin activates integrins, J. Biol. Chem., 2002, vol. 277, p. 21749.

    Article  PubMed  CAS  Google Scholar 

  10. Campbell, I.D. and Humphries, M.J., Integrin structure, activation and interactions, Cold Spring Harb. Perspect. -Biol., 2011, vol. 3. a004994. https://doi.org/10.1101/cshperspect.a004994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chang, Y.C., Zhang, H., Franco-Barraza, J., Brennan, M.L., Patel, T., Cukierman, E., and Wu, J., Structural and mechanistic insights into the recruitment of talin by RIAM in integrin signaling, Structure, 2014, vol. 22, p. 1810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Changede, R., Xu, X., Margadant, F., and Sheetz, M.P., Nascent integrin adhesions form on all matrix rigidities after integrin activation, Dev. Cell, 2015, vol. 35, p. 614.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, H.C., Appeddu, P.A., Parsons, J.T., Hildebrand, J.D., Schaller, M.D., and Guan, J.L., Interaction of focal adhesion kinase with cytoskeletal protein talin, J. Biol. Chem., 1995, vol. 270, p. 16995.

    Article  PubMed  CAS  Google Scholar 

  14. Chinthalapudi, K., Rangarajan, E.S., and Izard, T., The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, p. 10339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ciobanasu, C., Wang, H., Henriot, V., Mathieu, C., Fente, A., Csillag, S., Vigouroux, C., Faivre, B., and Clainche, C., Integrin-bound talin head inhibits actin filament barbed-end elongation, J. Biol. Chem., 2018, vol. 293, p. 2586.

    Article  PubMed  CAS  Google Scholar 

  16. Das, M., Ithychanda, S.S., Qin, J., and Plow, E.F., Mechanisms of talin-dependent integrin signaling and crosstalk, Biochim. Biophys. Acta, 2014, vol. 1838, p. 579.

    Article  PubMed  CAS  Google Scholar 

  17. Dedden, D., Schumacher, S., Kelley, C.F., Zacharias, M., Biertümpfel, C., Fässler, R., and Mizuno, N., The architecture of talin1 reveals an autoinhibition mechanism, Cell, 2019, vol. 179, p. 120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. De Pereda, J.M., Wegener, K.L., Santelli, E., Bate, N., Ginsberg, M.H., Critchley, D.R., Campbell, I.D., and Liddington, R.C., Structural basis for phosphatidylinositol phosphate kinase type Iγ binding to talin at focal adhesions, J. Biol. Chem., 2005, vol. 280, p. 8381.

    Article  PubMed  CAS  Google Scholar 

  19. del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J.M., and Sheetz, M.P., Stretching single talin rod molecules activates vinculin binding, Science, 2009, vol. 323, p. 638.

    Article  PubMed  CAS  Google Scholar 

  20. Di Paolo, G., Pellegrini, L., Letinie, K., Cestra, G., Zoncu, R., Voronov, S., Chang, S., Guo, J., Wenk, M.R., and De, Camilli, P., Recruitment and regulation of phosphatidylinositol phosphate kinase type Iγ by the FERM domain of talin, Nature, 2002, vol. 420, p. 85.

    Article  PubMed  CAS  Google Scholar 

  21. Elliott, P.R., Goult, B.T., Kopp, P.M., Bate, N., Grossmann, J.G., Roberts, G.C.K., Critchley, D.R., and Barsukov, I.L., The structure of the talin head reveals a novel extended conformation of the FERM domain, Structure, 2010, vol. 18, p. 1289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gao, J., Huang, M., Lai, J., Mao, K., Sun, P., Cao, Z., Hu, Y., Zhang, Y., Schulte, M.L., Jin, C., Wang, J., White, G.C., Xu, Z., and Ma, Y.Q., Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin, J. Cell Sci., 2017, vol. 130, p. 3764.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Garcia-Alvarez, B., de Pereda, J.M., Calderwood, D.A., Ulmer, T.S., Critchley, D.R., Campbell, I.D., Ginsberg, M.H., and Liddington, R.C., Structural determinants of integrin recognition by talin, Mol. Cell, 2003, vol. 11, p. 49.

    Article  PubMed  CAS  Google Scholar 

  24. Gingras, A.R., Ziegler, W.H., Frank, R., Barsukov, I.L., Roberts, G.C.K., Critchley, D.R., and Emsley, J., Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod, J. Biol. Chem., 2005, vol. 280, p. 37217.

    Article  PubMed  CAS  Google Scholar 

  25. Gingras, A.R., Bate, N., Goult, B.T., Hazelwood, L., Canestrelli, I., Grossmann, I.G., Liu, H., Putz, N.S.M., Roberts, G.C.K., Volkmann, N., Hanein, D., Barsukov, I.L., and Critchley, D.R., The structure of the C-terminal actin-binding domain of talin, EMBO J., 2008, vol. 27, p. 458.

    Article  PubMed  CAS  Google Scholar 

  26. Gingras, A.R., Bate, N., Goult, B.T., Patel, B., Kopp, P.M., Emsley, J., Barsukov, I.L., Roberts, G.C.K., and Critchley, D.R., Central region of talin has a unique fold that binds vinculin and actin, J. Biol. Chem., 2010, vol. 285, p. 29577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Goksoy, E., Ma, Y.Q., Wang, X., Kong, X., Perera, D., Plow, E.F., and Qin, J., Structural basis for the autoinhibition of talin in regulating integrin activation, Mol. Cell, 2008, vol. 31, p. 124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Goult, B.T., Bate, N., Anthis, N.J., Wegener, K.L., Gingras, A.R., Patel, B., Barsukov, I.L., Campbell, I.D., Roberts, G.C.K., and Critchley, D.R., The structure of an interdomain complex that regulates talin activity, J. Biol. Chem, 2009, vol. 284, p. 15097.

  29. Goult, B.T., Bouaouina, M., Elliott, P.R., Bate, N., Patel, B., Gingras, A.R., Grossmann, J.G., Roberts, G.C.K., Calderwood, D.A., Critchley, D.R., and Barsukov, I.L., Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation, EMBO J., 2010, vol. 29, p. 1069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Goult, B.T., Xu, X.P., Gingras, A.R., Swift, M., Patel, B., Bate, N., Kopp, P.M., Barsukov, I.L., Critchley, D.R., Volkmann, N., and Hanein, D., Structural studies on full-length talin1 reveal a compact auto-inhibited dimer: implications for talin activation, J. Struct. Biol., 2013a, vol. 184, p. 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Goult, B.T., Zacharchenko, T., Bate, N., Tsang, R., Hey, F., Gingras, A.R., Elliott, P.R., Roberts, G.C.K., Ballestream, C., Critchley, D.R., and Barsukov, I.L., RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover, J. Biol. Chem., 2013b, vol. 288, p. 8238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Goult, B.T., Yan, J., and Schwartz, M.A., Talin as a mechanosensitive signaling hub, J. Cell Biol., 2018, vol. 217, p. 3276.

    Article  CAS  Google Scholar 

  33. Han, J., Lim, C.J., Watanabe, N., Soriani, A., Ratnikov, B., Calderwood, D.A., Puzon-McLaughlin, W., Lafuente, E.M., Boussiotis, V.A., Shattil, S.J., and Ginsberg, M.H., Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3, Curr. Biol., 2006, vol. 16, p. 1796.

    Article  PubMed  CAS  Google Scholar 

  34. Hemmings, L., Rees, D.J.G., Ohanian, V., Bolton, S.J., Gilmore, A.P., Patel, B., Priddle, H., Trevithick, J.E., Hynes, R.O., and Critchley, D.R., Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding sites, J. Cell Sci., 1996, vol. 109, p. 2715.

    Article  PubMed  CAS  Google Scholar 

  35. Hu, X., Jing, C., Xu, X., Nakasawa, N., Cornish, V.W., Margadant, F.M., and Sheetz, M.P., Cooperative vinculin binding to talin mapped by time-resolved super resolution microscopy, Nano Lett., 2016, vol. 16, p. 4062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Humphries, J.D., Wang, P., Streuli, C., Geiger, B., Humphries, M.J., and Ballestream, C., Vinculin controls focal adhesion formation by direct interactions with talin and actin, J. Cell Biol., 2007, vol. 179, p. 1043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hytönen, V.P., and Vogel, V., How force might activate talin’s vinculin binding sites: SMD reveals a structural mechanism, PLoS Comput. Biol., 2008, vol. 4. e24. https://doi.org/10.1371/journal.pcbi.0040024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kalli, A.C., Campbell, I.D., and Sansom, M.S.P., Conformational changes in talin on binding to anionic phospholipid membranes facilitate signaling by integrin transmembrane helices, PLoS Comput. Biol., 2013, vol. 9. a1003316. https://doi.org/10.1371/journal.pcbi.1003316

    Article  Google Scholar 

  39. Klapholz, B. and Brown, N.H., Talin—the master of integrin adhesions, J. Cell Sci., 2017, vol. 130, p. 2435.

    PubMed  CAS  Google Scholar 

  40. Kopp, P.M., Bate, N., Hansen, T.M., Brindle, N.P.J., Praekelt, U., Debrand, E., Caleman, S., Mazzeo, D., Goult, B.T., Gingras, A.R., Pritchard, C.A., Critchley, D.R., and Monkley, S.J., Studies on the morphology and spreading of human endothelial cells define key inter-and intramolecular interactions for talin1, Eur. J. Cell Biol., 2010, vol. 89, p. 661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kumar, A., Ouyang, M, van den Dries, K., McGhee, E.J., Tanaka, K., Anderson, M.D., Groisman, A., Goult, B.T., Anderson, K.I., and Schwartz, M.A., Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity, J. Cell Biol., 2016, vol. 213, p. 371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lau, T.L., Kim, C., Ginsberg, M.H., and Ulmer, T.S., The structure of the integrin αIIbβ3 transmembrane complex explains integrin transmembrane signalling, EMBO J., 2009, vol. 28, p. 1351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lawson, C., Lim, S.T., Uryu, S., Chen, X.L., Calderwood, D.A., and Schlaepfer, D.D., FAK promotes recruitment of talin to nascent adhesions to control cell motility, J. Cell Biol., 2012, vol. 196, p. 223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lee, H.S., Bellin, R.M., Walker, D.L., Patel, B., Powers, P., Liu, H., Garcia-Alvarez, B., de, Pereda, J.M., Liddington, R.C., Volkmann, N., Hanein, D., Critchley, D.R., and Robson, R.M., Characterization of an actin-binding site within the talin FERM domain, J. Mol. Biol., 2004, vol. 343, p. 771.

    Article  PubMed  CAS  Google Scholar 

  45. Lee, S.E., Kamm, R.D., and Mofrad, M.R., Force-induced activation of talin and its possible role in focal adhesion mechanotransduction, J. Biomech., 2007, vol. 40, p. 2096.

    Article  PubMed  Google Scholar 

  46. Lee, H.S., Lim, C.J., Puzon-McLaughlin, W., Shattil, S.J., and Ginsberg, M.H., RIAM activates integrins by linking talin to Ras GTPase membrane-targeting sequences, J. B-iol. Chem., 2009, vol. 284, p. 5119.

    Article  CAS  Google Scholar 

  47. Legate, K.R. and Fässler, R., Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails, J. Cell Sci., 2009, vol. 122, p. 187.

    Article  PubMed  CAS  Google Scholar 

  48. Li, G., Du, X., Vass, W.C., Papageorge, A.G., Lowy, D.R., and Qian, X., Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK), Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, p. 17129.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Luo, B.H., Springer, T.A., and Takagi, J., A specific interface between integrin transmembrane helices and affinity for ligand, PLoS Biol., 2004, vol. 2. e153. https://doi.org/10.1371/Journal.pbio.0020153

    Article  PubMed  PubMed Central  Google Scholar 

  50. McCann, R.O. and Craig, S.W., The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, p. 5679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Mehrbod, M., Trisno, S., and Mofrad, M.R.K., On the activation of integrin αIIbβ3: outside-in and Inside-out pathways, Biophys. J., 2013, vol. 105, p. 1304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Morse, E.M., Brahme, N.N., and Calderwood, D.A., Integrin cytoplasmic tail interactions, Biochemistry, 2014, vol. 53, p. 810.

    Article  PubMed  CAS  Google Scholar 

  53. Pan, L., Zhao, Y., Yuan, Z., and Qin, G., Research advances on structure and biological functions of integrins, SpringerPlus, 2016, vol. 5, 1094. https://doi.org/10.1186/s40064-016-2502-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Papagrigoriou, E., Gingras, A.R., Barsukov, I.L., Bate, N., Fillingham, I.J., Patel, B., Frank, R., Ziegler, W.H., Roberts, G.C.K., Critchley, D.R., and Emsley, J., Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle, EMBO J., 2004, vol. 23, p. 2942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rahikainen, R., Öhman, T., Turkki, P., Varjosalo, M., and Hytönen, V.P., Talin-mediated force transmission and talin rod domain unfolding independently regulate adhesion signaling, J. Cell Sci., 2019, vol. 132. jcs226514. https://doi.org/10.1242/jcs.226514

    Article  PubMed  CAS  Google Scholar 

  56. Roberts, G.C.K. and Critchley, D.R., Structural and biophysical properties of the integrin-associated cytoskeletal protein talin, Biophys. Rev., 2009, vol. 1, p. 61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rodius, S., Chaloin, O., Moes, M., Schaffner-Reckinger, E., Landriew, I., Lippens, G., Lin, M., Zhang, J., and Kieffer, N., The talin rod IBS2 α-helix interacts with the β3 integrin cytoplasmic tail membrane-proximal helix by establishing charge complementary salt bridges, J. Biol. Chem., 2008, vol. 283, p. 24212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Saltel, F., Mortier, E., Hytönen, V.P., Jacquier, M.C., Zimmerman, P., Vogel, V., Liu, W., and Wehrle-Heller, B., New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control β3-integrin clustering, J. Cell Biol., 2009, vol. 187, p. 715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Schiemer, J., Bohm, A., Lin, L., Merrill-Skoloff, G., Flaumenhaft, R., Huang, J.S., Le, Breton, G.C., and Chishti, A.H., Gα13 switch region 2 relieves talin autoinhibition to activate αIIbβ3 integrin, J. Biol. Chem., 2016, vol. 291, p. 26598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Shattil, S.J., Kim, C., and Ginsberg, M.H., The final steps of integrin activations: the end game, Nat. Rev. Mol. Cell B-iol., 2010, vol. 11, p. 288.

    Article  CAS  Google Scholar 

  61. Song, X., Yang, J., Hirbawi, J., Ye, S., Perera, H.D., Goksoy, E., Dwivedi, P., Plow, E.F., Zhang, R., and Qin, J., A novel membrane-dependent on/off switch mechanism talin FERM domain at sites of cell adhesion, Cell Res., 2012, vol. 22, p. 1533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sun, N., Critchley, D.R., Paulin, D., Li, Z., and Robson, R.M., Identification of a repeated domain within mammalian α-synemin that interacts directly with talin, Exp. Cell Res., 2008, vol. 314, p. 1839.

    Article  PubMed  CAS  Google Scholar 

  63. Sun, Z., Tseng, H.Y., Tan, S., Senger, F., Kursawa, L., Dedden, D., Mizuno, N., Wasik, A.A., Thery, M., Dunn, A.R., and Fässler, R., Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation, Nat. Cell Biol., 2016, vol. 18, p. 941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tremuth, L., Kreis, S., Melchior, C., Hoebeke, J., Rondé, P., Plancon, S., Takeda, K., and Kieffer, N., A fluorescence cell biology approach to map the second integrin-binding site of talin to a 130-amino acid sequence within the rod domain, J. Biol. Chem., 2004, vol. 279, p. 22258.

    Article  PubMed  CAS  Google Scholar 

  65. Vinogradova, O., Velyvis, A., Velyviene, A., Hu, B., Haas, T.A., Plow, E.F., and Qin, J., A structural mechanism of integrin αIIbβ3 “inside-out” activation as regulated by its cytoplasmic face, Cell, 2002, vol. 110, p. 587.

    Article  PubMed  CAS  Google Scholar 

  66. Wang, S., Watanabe, T., Matsuzawa, K., Katsumi, A., Kakeno, M., Matsui, T., Ye, F., Sato, K., Murase, K., Sugiyama, I., Kimura, K., Mizoguchi, A., Ginsberg, M.H., Collard, J.G., and Kaibuchi, K., Tiam 1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration, J. Cell Biol., 2012, vol. 199, p. 331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wegener, K.L., Partridge, A.W., Han, J., Pickford, A.R., Liddington, R.C., Ginsberg, M.H., and Campbell, I.D., Structural basis of integrin activation by talin, Cell, 2007, vol. 128, p. 171.

    Article  PubMed  CAS  Google Scholar 

  68. Wolfenson, H., Lavelin, I., and Geiger, B., Dynamic regulation of the structure and functions of integrin adhesions, Dev. Cell., 2013, vol. 24, p. 447.

    Article  PubMed  CAS  Google Scholar 

  69. Yan, J., Yao, M., Goult, B.T., and Sheetz, M.P., Talin dependent mechanosensitivity of cell focal adhesions, Cell. Mol. Bioeng., 2015, vol. 8, p. 151.

    Article  PubMed  CAS  Google Scholar 

  70. Yang, J., Zhu, L., Zhang, H., Hirbawi, J., Fukuda, K., Dwivedi, P., Liu, J., Byzova, T., Plow, E.F., Wu, J., and Qin, J., Conformational activation of talin by RIAM triggers integrin-mediated cell adhesion, Nat. Commun., 2014, vol. 5, 5880. https://doi.org/10.1038/ncomms6880

    Article  PubMed  CAS  Google Scholar 

  71. Yao, M., Goult, B.T., Chen, H., Cong, P., Sheetz, M.P., and Yan, J., Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation, Sci. Rep., 2014, vol. 4, 4610. https://doi.org/10.1038/srep04610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yao, M., Goult, B.T., Klapholz, B., Hu, X., Toseland, C.P., Guo, Y., Cong, P., Sheetz, M.P., and Yan, J., The mechanical response of talin, Nat. Commun., 2016, vol. 7, p. 11966. https://doi.org/10.1038/ncomms11966

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ye, X., McLean, M.A., and Sligar, S.G., Conformational equilibrium of talin is regulated by anionic lipids, Biochim. Biophys. Acta, 2016, vol. 1858, p. 1833.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Zacharchenko, T., Qian, X., Goult, B.T., Jethwa, D., Almeida, T.B., Ballestrem, C., Critchley, D.R., Lowy, D.R., and Barsukov, I.L., LD motif recognition by talin: structure of the talin–DLC1 complex, Structure, 2016, vol. 24, p. 1130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zaidel-Bar, R., Itzkovitz, S., Ma’ayan, A., Iyengar, R., and Geiger, B., Functional atlas of the integrin adhesome, Nat. Cell Biol., 2007, vol. 9, p. 858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhang, H., Chang, Y.C., Huang, Q., Brennan, M.L., and Wu, J., Structural and functional analysis of a talin triple-domain module suggests an alternative talin autoinhibitory configuration, Structure, 2016, vol. 24, p. 721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Zhu, L., Yang, J., Bromberger, T., Holly, A., Lu, F., Liu, H., Sun, K., Klapproth, S., Hirbawi, J., Byzova, T.V., Plow, E.F., Moser, M., and Qin, J., Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation, Nat. Commun., 2017, vol. 8, 1744. https://doi.org/10.1038/s41467-017-01822-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of a state order to the Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, state registration no. АААА-А18-118012290371-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ivanova.

Ethics declarations

The author declares that she has no conflict of interest.

The author did not conduct experiments with animals or human beings.

Additional information

Translated by I. Fridlyanskaya

Abbreviations: ECM—extracellular matrix, ABS—actin binding site, DLC1—liver tumor suppressor, FAK—focal adhesion kinase, FERM—family of proteins (protein 4.1, ezrin, radixin, moesin), IBS—integrin binding site, KANK1-2—kidney ankyrin repeat-containing proteins, PIP2—phosphatidylinositol 4,5-bisphosphate, PIPK1γ—phosphatidylinositol 4-phosphate 5-kinase type I, RIAM—Rap1-GTP-interacting adapter molecule, TIAM1—T-cell lymphoma invasion and metastasis inducing factor; VBS,—vinculin binding site.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, V.P. Talin: Structural and Functional Relationships. Cell Tiss. Biol. 15, 416–427 (2021). https://doi.org/10.1134/S1990519X21050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21050060

Keywords:

Navigation