Skip to main content
Log in

Cerebellar Cortex Neurons and Microglia Reaction to Sevoflurane Anesthesia

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The cerebellum is a part of the brain that is very sensitive to the toxic effects of general anesthetics. The aim of this work was to evaluate the morphological response of neurons and microgliocytes in all layers of the cerebellar cortex to prolonged (6 h) exposure of sevoflurane (general anesthetic). It was shown that, after prolonged exposure of Wistar male rats to sevoflurane, structural and functional rearrangement were observed in all layers of the cerebellar cortex. In the molecular and ganglion layers the total density of neurons decreased. The number of morphologically altered cells of the molecular layer and Purkinje cells increased to 250 and 300%, respectively, due to both direct toxic effects of the anesthetic and disruption of interneuron connections. In the granular layer, the total density of the neuron population did not change and the number of morphologically altered neurons did not increase significantly. The number of microgliocytes revealed immunohistochemically increased significantly, and activation in response to neuronal death was weakly present. The absence of excessive activation of microgliocytes after prolonged exposure to sevoflurane is a positive result, since neuroinflammatory mediators are produced to a lesser extent and neurons do not experience additional damaging effects from microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Alekseeva, O.S., Gilerovich, E.G., Kirik, O.V., and Korzhevskii, D.E., Structure and spatial organization of microgliocytes in the molecular layer of the cerebellar cortex in rabbits, Neurosci. Behav. Physiol., 2017, vol. 47, no. 6, pp. 637—640.

    Article  CAS  Google Scholar 

  2. Ambrosi, G., Flace, P., Lorusso, L., Girolamo, F., Rizzi, A., Bosco, L., Errede, M., Virgintino, D., Roncali, L., and Benagiano, V., Non-traditional large neurons in the granular layer of the cerebellar cortex, Eur J. Histochem., 2007, vol. 51, pp. 59–64.

    PubMed  Google Scholar 

  3. Ancelin, M.L., De, Roquefeuil, G., and Ritchie, K., Anesthesia and postoperative cognitive dysfunction in the elderly: a review of clinical and epidemiological observations, Rev. Epidemiol. Sante Publique, 2000, vol. 48, pp. 459–472.

    CAS  PubMed  Google Scholar 

  4. Baloyannis, S.J., Dendritic and spinal pathology of the purkinje cells from the human cerebellar vermis in Alzheimer’s disease, Psychiatr. Danub., 2013, vol. 25, pp. 221–226.

    PubMed  Google Scholar 

  5. Belozertseva, I.V., Dravolina, O.A., Krivov, V.O., Tur, M.A., Mus, L.V., and Polushin, Yu.S., Postoperative changes in the behavior of rats after anesthesia with sevoflurane, Vestn. Anesteziol. Reanimatol., 2017, vol. 14, no. 2, pp. 55–63.

    Article  Google Scholar 

  6. Bertoni-Freddari, C., Fattoretti, P., Giorgetti, B., Solazzi, M., Balietti, M., Casoli, T., and Di Stefano, G., Decay of mitochondrial metabolic competence in the aging cerebellum, Ann. N.Y. Acad. Sci., 2004, vol. 1019, pp. 29–32.

    Article  CAS  Google Scholar 

  7. Block, M.L., Zecca, L., and Hong, J.S., Microglia-mediated neurotoxicity: uncovering the molecular mechanisms, Nat. Rev. Neurosci., 2007, vol. 8, pp. 57–69.

    Article  CAS  Google Scholar 

  8. DelRosso, L.M., and Hoque, R., The cerebellum and sleep, Neurol. Clin., 2014, vol. 32, pp. 893–900.

    Article  Google Scholar 

  9. Dino, M.R., Perachio, A.A., and Mugnaini, E., Cerebellar unipolar brush cells are targets of primary vestibular afferents: an experimental study in the gerbil, Exp. Brain Res., 2001, vol. 140, pp. 162–170.

    Article  CAS  Google Scholar 

  10. Frei, J., Cerebral complications and general anesthesia, Schweiz. Rundsch. Med. Prax., 1992, vol. 81, pp. 1098–1101.

    CAS  PubMed  Google Scholar 

  11. Gonzalez, H., Elgueta, D., Montoya, A., and Pacheco, R., Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases, J. Neuroimmunol., 2014, vol. 274, pp. 1–13.

    Article  CAS  Google Scholar 

  12. Graeber, M.B. and Streit, W.J., Microglia: biology and pathology, Acta Neuropathol., 2010, vol. 119, pp. 89–105.

    Article  Google Scholar 

  13. Kalinichenko, S.G. and Motavkin, P.A., Kora mozzhechka (The Cerebellar Cortex), Moscow: Nauka, 2005.

  14. Khozhai, L.I. and Otellin, V.A., Reactive microglial changes in rat neocortex and hippocampus after exposure to acute perinatal hypoxia, Morfologiia, 2013, vol. 143, no. 1, pp. 23–27.

    CAS  PubMed  Google Scholar 

  15. Kirik, O.V., Sukhorukova, E.G., Alekseeva, O.S., and Korzhevskii, D.E., Subependymal microgliocytes of the third ventricle of the brain, Morfologiia, 2014, vol. 145, no. 2, pp. 67–69.

    CAS  PubMed  Google Scholar 

  16. Korzhevskii, D.E., Kirik, O.V., Sukhorukova, E.G., and Syrszova, M.A., Microglia of the human substantia nigra, Med. Akad. Zh., 2014, vol. J 14, no. 4, pp. 68–72.

  17. Koziol, L.F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., Ito, M., Manto, M., Marvel, C., Parker, K., Pezzulo, G., Ramnani, N., Riva, D., Schmahmann, J., Vandervert, L., and Yamazaki, T., Consensus paper: the cerebellum’s role in movement and cognition, Cerebellum, 2014, vol. 13, pp. 151–177. Laine, J. and Axelrad, H., Morphology of the Golgi-impregnated Lugaro cell in the rat cerebellar cortex: a reappraisal with a description of its axon, J. Comp. Neurol., 1996, vol. 375, pp. 618–640.

    Article  Google Scholar 

  18. Laine, J. and Axelrad, H., Extending the cerebellar Lugaro cell class, Neuroscience, 2002, vol. 115, pp. 363–374.

    Article  CAS  Google Scholar 

  19. Lyman, M., Lloyd, D.G., Ji, X., Vizcaychipi, M.P., and Ma, D., Neuroinflammation: the role and consequences, Neurosci. Res., 2014, vol. 79, pp. 1–12.

    Article  CAS  Google Scholar 

  20. Marshall, S.A., McClain, J.A., Kelso, M.L., Hopkins, D.M., Pauly, J.R., and Nixon, K., Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: the importance of microglia phenotype, Neurobiol. Dis., 2013, vol. 54, pp. 239–251.

    Article  CAS  Google Scholar 

  21. Mavroudis, I.A., Manani, M.G., Petrides, F., Petsoglou, K., Njau, S.D., Costa, V.G., and Baloyannis, S.J., Dendritic and spinal pathology of the purkinje cells from the human cerebellar vermis in Alzheimer’s disease, Psychiatr. Danub., 2013, vol. 25, pp. 221–226.

    PubMed  Google Scholar 

  22. Moller, J.T., Cerebral dysfunction after anaesthesia, Acta. Anaesthesiol. Scand., 1997, vol. 110, pp. 13–16.

    Article  CAS  Google Scholar 

  23. Monk, T.G., Weldon, B.C., Garvan, C.W., Dede, D.E., van, der, Aa, M.T., Heilman, K.M., and Gravenstein, J.S., Predictors of cognitive dysfunction after major noncardiac surgery, Anesthesiology, 2008, vol. 108, pp. 18–30.

    Article  Google Scholar 

  24. Norsidah, A.M., and Puvaneswari, A., Anaesthetic complications in the recovery room, Singapore Med. J., 1997, vol. 38, pp. 200–204.

  25. Peng, Y.P., Qiu, Y.H., Chao, B.B., and Wang, J.J., Effect of lesion of cerebellar fastigial nuclei on lymphocyte functions of rat, Neurosci. Res., 2005, vol. 51, pp. 275–284.

    Article  CAS  Google Scholar 

  26. Pouzat, C., and Hestrin, S., Developmental regulation of basket/stellate cells— Purkinje cell synapses in the cerebellum, Neuroscience, 1997, vol. 17, pp. 9104–9112.

    Article  CAS  Google Scholar 

  27. Schmahmann, J.D. and Caplan, D., Cognition, emotion and the cerebellum, Brain, 2006, vol. 129, pp. 341–347.

    Article  Google Scholar 

  28. Schmahmann, J.D. and Sherman, J.C., The cerebellar cognitive affective syndrome, Brain, 1998, vol. 121, pp. 561–579.

    Article  Google Scholar 

  29. Serhan, C.N., Chiang, N., and Van, Dyke, T.E., Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators, Nat. Rev. Immunol., 2008, vol. 8, pp. 349–361.

    Article  CAS  Google Scholar 

  30. Steinmetz, J., Funder, K.S., Dahl, B.T., and Rasmussen, L.S., Depth of anaesthesia and post-operative cognitive dysfunction, Acta Anaesthesiol. Scand., 2010, vol. 54, pp. 162–168.

    Article  CAS  Google Scholar 

  31. Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S., and Nabekura, J., Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals, J. Neurosci., 2009, vol. 29, pp. 3974 –3980.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of a state order, state registration no. AAAA-A18-118102590054-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Yukina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.Statement on the welfare of animals. All experiments with animals were performed in accordance with the rules for working with experimental animals according to the principles of the European Convention, Strasbourg, 1986, and the Helsinki Declaration of the World Medical Association on the Humane Treatment of Animals, 1996.

Additional information

Translated by I. Fridlyanskaya

Abbreviations: CG—control group, EG—experimental group.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yukina, G.Y., Sukhorukova, E.G., Belozertseva, I.V. et al. Cerebellar Cortex Neurons and Microglia Reaction to Sevoflurane Anesthesia. Cell Tiss. Biol. 13, 439–445 (2019). https://doi.org/10.1134/S1990519X19060105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X19060105

Keywords:

Navigation