Skip to main content
Log in

Multipotent Mesenchymal Stem Cells Derived from Sheep Bone Marrow: Isolation and Cryopreservation

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Sheep are often used as preclinical large animal models for testing the therapeutic potential of multipotent mesenchymal stem cells (MMSCs). A cell culture with characteristics typical for MMSCs was obtained due to optimization of the method of cell isolation from sheep bone marrow (BM) in a Ficoll density gradient. The advantage of using SepMate-15 tube compared to the isolation by the classical method has been demonstrated. The obtained cells demonstrated a strong adhesion to the culture plastic, fibroblast-like morphology, and, being induced in vitro, the ability to differentiate into cells of adipose, bone, and cartilage tissues. Adipogenic differentiation was confirmed on day 14, when adipocytes with lipid vesicles positive for Oil Red O specific staining had been formed. On day 14, specific alkaline phosphatase activity appeared in cells in osteogenic medium. Von Kossa staining revealed the presence of insoluble calcium salts in the intercellular space. Chondrogenic differentiation appeared on day 14 and was accompanied with the formation of multilayer structures with an abandon matrix, in which the isogenic groups that resemble hyaline cartilage lacunae were visualized. On day 21, the cells formed tight microgranules with glycosaminoglycan matrixes. Cells were cryopreserved in three different media at the zero passage. A comparative analysis of cell viability was then performed, which revealed a relatively good cell state (more than 70% of live cells). The MMSCs culture obtained from sheep BM was deposited at two to three passages in the specialized Collection of Somatic Cell Cultures of Agricultural and Industrial Animals at the All-Russian Research Institute of Experimental Veterinary Medicine of Russian Academy of Science and could be used in preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Adamzyk, C., Emonds, T., Falkenstein, J., Tolba, R., Jahnen-Dechent, W., Lethaus, B., and Neuss, S., Different culture media affect proliferation, surface epitope expression, and differentiation of ovine MSC, Stem Cells Int., 2013, vol. 2013, p. 387 324.

    Article  CAS  Google Scholar 

  2. Behr, L., Hekmati, M., Fromont, G., Borenstein, N., Noel, L.H., Lelievre-Pegorier, M., and Laborde, K., Intra renal arterial injection of autologous mesenchymal stem cells in an ovine model in the postischemic kidney, Nephron Physiol., 2007, vol. 107, pp. 65–76.

    Article  Google Scholar 

  3. Caminal, M., Velez, R., Rabanal, R.M., Vivas, D., Batlle-Morera, L., Aguirre, M., Barquinero, J., Garcia, J., and Vives, J., A reproducible method for the isolation and expansion of ovine mesenchymal stromal cells from bone marrow for use in regenerative medicine preclinical studies, J. Tissue Eng. Regen. Med., 2017, vol. 11, pp. 3408–3416.

    Article  CAS  PubMed  Google Scholar 

  4. Caplan, A.I. and Correa, D., The MSC: an injury drugstore, Cell Stem Cell, 2011, vol. 9, pp. 11–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carrade, D.D. and Borjesson, D.L., Immunomodulation by mesenchymal stem cells in veterinary species, Comp. Med., 2013, vol. 63, pp. 207–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Colosimo, A., Russo, V., Mauro, A., Curini, V., Marchisio, M., Bernabo, N., Alfonsi, M., Mattioli, M., and Barboni, B., Prolonged in vitro expansion partially affects phenotypic features and osteogenic potential of ovine amniotic fluid-derived mesenchymal stromal cells, Cytotherapy, 2013, vol. 15, pp. 930–950.

    Article  CAS  PubMed  Google Scholar 

  7. Dalina, A.D., Mukhambetova, A.E., Batpenov, N.D., Raymagambetov, E.K., and Ogay, V.B., Effect of TGF-β1, IGF-I, BMP-2, and BMP-4 growth factors on chondrogenic differentiation of mesenchymal stem cells isolated from human synovial membrane, Biotekhnol. Teor. Prakt., 2013, vol. 1, pp. 12–15.

    Google Scholar 

  8. Delling, U., Brehm, W., Ludewig, E., Winter, K., and Julke, H., Longitudinal evaluation of effects of intra-articular mesenchymal stromal cell administration for the treatment of osteoarthritis in an ovine model, Cell Transplant., 2015, vol. 24, pp. 2391–2407.

    Article  PubMed  Google Scholar 

  9. Desantis, S., Accogli, G., Zizza, S., Mastrodonato, M., Blasi, A., Francioso, E., Rossi, R., Crovace, A., and Resta, L., Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells, Ann. Anat., 2015, vol. 201, pp. 43–49.

    Article  PubMed  Google Scholar 

  10. Desantis, S., Accogli, G., Crovace, A., Francioso, E.G., and Crovace, A.M., Surface glycan pattern of canine, equine, and ovine bone marrow-derived mesenchymal stem cells, Cytometry, Part A, 2018, vol. 93, pp. 73–81.

    Article  CAS  Google Scholar 

  11. Eaker, S., Armant, M., Brandwein, H., Burger, S., Campbell, A., Carpenito, C., Clarke, D., Fong, T., Karnieli, O., Niss, K., Van’t, Hof, W., and Wagey, R., Concise review: guidance in developing commercializable autologous/patient-specific cell therapy manufacturing, Stem Cells Transl. Med., 2013, vol. 2, pp. 871–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heidari, B., Shirazi, A., Akhondi, M.M., Hassanpour, H., Behzadi, B., and Naderi, M.M., Comparison of proliferative and multilineage differentiation potential of sheep mesenchymal stem cells derived from bone marrow, liver, and adipose tissue, Avicenna J. Med. Biotechnol., 2013, vol. 5, pp. 104–117.

    PubMed  PubMed Central  Google Scholar 

  13. Jessop, H.L., Noble, B.S., and Cryer, A., The differentiation of a potential mesenchymal stem cell population within ovine bone marrow, Biochem. Soc. Trans., 1994, vol. 22, p. 248.

    Article  Google Scholar 

  14. Kadekar, D., Rangole, S., Kale, V., and Limaye, L., Conditioned medium from placental mesenchymal stem cells reduces oxidative stress during the cryopreservation of ex vivo expanded umbilical cord blood cells, PLoS One, 2016, vol. 11. e0165466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalaszczynska, I., Ruminski, S., Platek, A.E., Bissenik, I., Zakrzewski, P., Noszczyk, M., and Lewandowska-Szumiel, M., Substantial differences between human and ovine mesenchymal stem cells in response to osteogenic media: how to explain and how to manage?, BioRes. Open Access, 2013, vol. 2, pp. 356–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khan, M.R., Chandrashekran, A., Smith, R.K., and Dudhia, J., Immunophenotypic characterization of ovine mesenchymal stem cells, Cytometry, Part A, 2016, vol. 89, pp. 443–450.

    Article  CAS  Google Scholar 

  17. Korovina, D.G., Yurov, K.P., Volkova, I.M., Alekseenkova, S.V., Vasilieva, S.A., Savchenkova, E.A., and Savchenkova, I.P., Equine umbilical cord blood is as source of multipotent mesenchymal stem cells, Konevod. Konnyi Sport, 2015, vol. 6, pp. 31–33.

    Google Scholar 

  18. Korovina, D.G., Yurov, K.P., Alexeenkova, S.V., Savchenkova, E.A., and Savchenkova, I.P., Characterization of multipotent mesenchymal stem cells isolated from equine cord blood, Ross. S-kh. Nauka, 2017, vol. 43, no. 3, pp. 262–265.

  19. Kulneva, E.I., Devrishov, D.A., Teplyashin, A.S., and Korzhikova, S.V., Characteristics of multipotent mesenchymal stromal cell-like cells isolated from the ovine bone marrow, Vet. Med., 2010a, vols. 3–4, pp. 102–104.

    Google Scholar 

  20. Kulneva, E.I., Korzhikova, S.V., Teplyashin, A.S., and Devrishov, D.A., The effective adipogenic differentiation of MMSCs isolated from ovine bone marrow after treatment with media containing inductors, Vet. Med., 2010b, vol. 3–4, pp. 104–105.

    Google Scholar 

  21. Lacitignola, L., Staffieri, F., Rossi, G., Francioso, E., and Crovace, A., Survival of bone marrow mesenchymal stem cells labelled with red fluorescent protein in an ovine model of collagenase-induced tendinitis, Vet. Comp. Orthop. Traumatol., 2014, vol. 27, pp. 204–209.

    Article  CAS  PubMed  Google Scholar 

  22. Landa-Solis, C., Granados-Montiel, J., Olivos-Meza, A., Ortega-Sanchez, C., Cruz-Lemini, M., Hernandez-Flores, C., Chang-Gonzalez, M.E., Garcia, R.G., Olivos-Diaz, B., Velasquillo-Martínez, M.C., Pineda, C., and Ibarra, C., Cryopreserved CD90+ cells obtained from mobilized peripheral blood in sheep: a new source of mesenchymal stem cells for preclinical applications, Cell Tiss. Bank., 2016, vol. 17, pp. 137–145.

    Article  CAS  Google Scholar 

  23. Lin, H.D., Bongso, A., Gauthaman, K., Biswas, A., Choolani, M., and Fong, C.Y., Human Wharton’s jelly stem cell conditioned medium enhances freeze-thaw survival and expansion of cryopreserved CD34+ cells, Stem Cell Rev., 2013, vol. 9, pp. 172–183.

    Article  CAS  Google Scholar 

  24. Lyahyai, J., Mediano, D.R., Ranera, B., Sanz, A., Remacha, A.R., Bolea, R., Zaragoza, P., Rodellar, C., and Martin-Burriel, I., Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood, BMC Vet. Res., 2012, vol. 8, p. 169.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maia, L., Moraes, C.N., Freitas-Dell’Aqua, C.P., Queiroz, C.M., Mota, L.S.L.S., Santiloni, V., and Landim-Alvarenga, F.C., Development of a cryopreservation protocol for equine mesenchymal stem cells obtained from umbilical cord, J. Equinal Vet. Sci., 2014, vol. 34, p. 235. https://doi.org/10.1016/j.jevs.2013.10.167

    Article  Google Scholar 

  26. Maia, L., Dias, M.C., de Moraes, C.N., de Paula Freitas-Dell’Aqua, C., da Mota, L.S., Santiloni, V., and da Cruz Landim-Alvarenga, F., Conditioned medium: a new alternative for cryopreservation of equine umbilical cord mesenchymal stem cells, Cell Biol. Int., 2017, vol. 41, pp. 239–248.

    Article  CAS  PubMed  Google Scholar 

  27. McCarty, R.C., Gronthos, S., Zannettino, A.C., Foster, B.K., and Xian, C.J., Characterisation and developmental potential of ovine bone marrow derived mesenchymal stem cells, J. Cell. Physiol., 2009, vol. 219, pp. 324–333.

    Article  CAS  PubMed  Google Scholar 

  28. Mrugala, D., Bony, C., Neves, N., Caillot, L., Fabre, S., Moukoko, D., Jorgensen, C., and Noel, D., Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model, Ann. Rheum. Dis., 2008, vol. 67, pp. 288–295.

    Article  CAS  PubMed  Google Scholar 

  29. Music, E., Futrega, K., and Doran, M.R., Sheep as a model for evaluating mesenchymal stem/stromal cell (MSC)-based chondral defect repair, Osteoarthritis Cartilage, 2018, vol. 26, pp. 730–740.

    Article  CAS  PubMed  Google Scholar 

  30. Oliver-Vila, I., Ramirez-Moncayo, C., Grau-Vorster, M., Marin-Gallen, S., Caminal, M., and Vives, J., Optimisation of a potency assay for the assessment of immunomodulative potential of clinical grade multipotent mesenchymal stromal cells, Cytotechnology, 2018, vol. 70, pp. 31–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pawitan, J.A., Prospect of stem cell conditioned medium in regenerative medicine, Biomed. Res. Int., 2014. https://doi.org/10.1155/2014/965849

  32. Posel, C., Moller, K., Frohlich, W., Schulz, I., Boltze, J., and Wagner, D.C., Density gradient centrifugation compromises bone marrow mononuclear cell yield, PLoS One, 2012, vol. 7, p. e50293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rentsch, C., Hess, R., Rentsch, B., Hofmann, A., Manthey, S., Scharnweber, D., Biewener, A., and Zwipp, H., Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds, In Vitro Cell. Develop. Biol. Anim., 2010, vol. 46, pp. 624–634.

    Article  CAS  Google Scholar 

  34. Renzi, S., Lombardo, T., Dotti, S., Dessi, S.S., De, Blasio, P., and Ferrari, M., Mesenchymal stromal cell cryopreservation, Biopreserv. Biobank., 2012, vol. 10, pp. 276–281.

    Article  CAS  PubMed  Google Scholar 

  35. Rhodes, N.P., Srivastava, J.K., Smith, R.F., and Longinotti, C., Heterogeneity in proliferative potential of ovine mesenchymal stem cell colonies, J. Mater. Sci. Mater. Med., 2004, vol. 15, pp. 397–402.

    Article  CAS  PubMed  Google Scholar 

  36. Sanjurjo-Rodriguez, C., Castro-Vinuelas, R., Hermida-Gomez, T., Fernandez-Vazquez, T., Fuentes-Boquete, I.M., de Toro-Santos, F.J., Diaz-Prado, S.M., and Blanco-Garcia, F.J., Ovine mesenchymal stromal cells: morphologic, phenotypic and functional characterization for osteochondral tissue engineering, PLoS One, 2017, vol. 12, p. e0171231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Savchenkova, I.P. and Savchenkova, E.A., Integrin expression during long-term cultivation in multipotent mesenchymal stromal cells isolated from human adipose tissue, Cell Tissue Biol., 2014, vol. 8, no. 6, pp. 454–460.

    Article  Google Scholar 

  38. Savchenkova, I.P., Ernst, L.K., Gulyukin, M.I., and Viktorova, E.V., Metodicheskie nastavleniya po vydeleniyu mul’tipotentnykh mezenkhimnykh stvolovykh kletok iz tkanei vzroslykh osobei mlekopitayushchikh, izucheniyu ikh svoystv i priznakov (Guidelines to the Isolation of Multipotent Mesenchymal Stem Cells from the Tissues of Adult Mammals and Study of Their Properties and Traits), Moscow: Sputnik+, 2010.

  39. Savchenkova, I.P., Savchenkova, E.A., and Gulyukin, M.I., The changes of multipotent mesenchymal stromal cells isolated from human adipose tissue during long-term cultivation, Cell Tissue Biol., 2017, vol. 11, no. 5, pp. 349–355.

    Article  Google Scholar 

  40. Sergeeva, N.S., Frank, G.A., Sviridova, I.K., Kirsanova, VA., Akhmedova, SA., and Antokhin, A.I., The role of multipotential mesenchymal stromal cells in tissue-engineering constructions based on skeleton of natural corals and synthetic biomaterials for bone defects substitution on animals, Genes Cells, 2009, vol. 4, no. 4, pp. 56–64.

    Google Scholar 

  41. Sviridova, I.K., Sergeeva, N.S., Frank, G.A., Teplyakov, V.V., Kirsanova, V.A., Akhmedova, S.A., Myslevtsev, I.V., and Shansky, Ya.D., A skeleton of Acropora corals in replacing bone tissue defects in small and large laboratory animals, Genes Cells, 2010, vol. 5, no. 4, pp. 43–48.

    Google Scholar 

  42. Teplyashin, A.S., Korzhikova, S.V., Sharifullina, S.Z., Rostovskaya, M.S., Chupikova, N.I., Vasyunina, N.Yu., Andronova, N.V., Treshalina, E.M., and Savchenkova, I.P., Differentiation of multipotent mesenchymal stromal cells of human bone marrow into cells of cartilage tissue by culturing in three-dimensional OPLA scaffolds, Cell Tissue Biol., 2007, vol. 1, no. 2, pp. 125–132.

    Article  Google Scholar 

  43. Uder, C., Bruckner, S., Winkler, S., Tautenhahn, H.M., and Christ, B., Mammalian MSC from selected species: features and applications, Cytometry, Part A, 2018, vol. 93, pp. 32–49.

    Article  CAS  Google Scholar 

  44. Uzbekov, R.E., Analysis of protein expression level dynamics in the cell cycle using synchronized cells, Biochemistry (Moscow), 2004, vol. 69, no. 5, pp. 485–496.

    CAS  PubMed  Google Scholar 

  45. Vivas, D., Caminal, M., Oliver-Vila, I., and Vives, J., Derivation of multipotent mesenchymal stromal cells from ovine bone marrow, Curr. Protoc. Stem Cell Biol., 2018, vol. 44, pp. 2B91–2B922.

  46. Volkova, I.M., Viktorova, E.V., Savchenkova, I.P., and Gulyukin, M.I., Characteristic of mesenchymal stem cells isolated from bone marrow and fatty tissue of cattle, S-kh. Biol., 2012, vol. 2, pp. 32–38.

    Google Scholar 

  47. Zscharnack, M., Hepp, P., Richter, R., Aigner, T., Schulz, R., Somerson, J., Josten, C., Bader, A., and Marquass, B., Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model, Am. J. Sports Med., 2010, vol. 38, pp. 1857–1869.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Korovina.

Additional information

Translated by I. Shipounova

  Abbreviations: DMSO—dimethyl sulfoxide, BM—bone marrow, MMSCs—multipotent mesenchymal stem cells, CB—cord blood, FBS—fetal bovine serum, AP—alkaline phosphatase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korovina, D.G., Volkova, I.M., Vasilieva, S.A. et al. Multipotent Mesenchymal Stem Cells Derived from Sheep Bone Marrow: Isolation and Cryopreservation. Cell Tiss. Biol. 13, 161–169 (2019). https://doi.org/10.1134/S1990519X19030052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X19030052

Keywords:

Navigation