Skip to main content

Advertisement

Log in

Human Wharton’s Jelly Stem Cell Conditioned Medium Enhances Freeze-Thaw Survival and Expansion of Cryopreserved CD34+ Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Hematopoietic stem cells (HSCs) from umbilical cord blood have been successfully used to treat blood disorders but one major hurdle is the relatively low cell dose available. Double cord blood unit transplantation results in elevated engraftment failure because one unit predominates over the other. Various approaches are thus being undertaken to expand HSCs ex vivo from single cord blood units. We report here a protocol involving slow freezing (−1 °C per minute to −120 °C) + freezing medium containing DMSO + FBS + 24 h-50 % hWJSC-CM that enhances thaw-survival of CD34+ cells. Post-thawing, the fold, percentage and colony forming unit numbers of CD34+ cells were significantly increased (2.08 ± 0.3; 102 ± 1.17 %; 1.07 ± 0.02 respectively) while the percentages of apoptotic, necrotic, dead and sub-G1 phase cells (91.06 ± 3.63 %; 91.80 ± 5.01 %; 95.6 ± 3.61 %; 86.1 ± 16.26 % respectively) were significantly decreased compared to controls. Post-thaw culture in 24 h-50 % hWJSC-CM+FBS for 72 h showed further significant increases in CD34+ cells (fold: 2.28 ± 0.17; percentage: 153.3 ± 21.99 %, CFU: 1.6 ± 0.19) and significant decreases in apoptotic, necrotic, dead and sub-G1 cells (49.2 ± 3.59 %; 62.0 ± 4.30 %; 56.6 ± 5.06 %; 28.6 ± 5.74 % respectively) compared to controls. We hypothesize that these improvements are probably related to the high levels of cytokines, cell adhesion molecules and growth factors in hWJSC-CM that help to preserve cell membrane integrity during freezing and stimulate mitosis post-thaw. A 24 h-50 % hJWSC-CM may be a useful supplement for freezing CD34+ cells in cord blood banks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salama, H., Zekri, A. R., Zern, M., et al. (2010). Autologous hematopoietic stem cell transplantation in 48 patients with end-stage chronic liver diseases. Cell Transplantation, 19, 1475–1486.

    Article  PubMed  Google Scholar 

  2. Krishnan, A., & Forman, S. J. (2010). Hematopoietic stem cell transplantation for AIDS-related malignancies. Current Opinion in Oncology, 22, 456–460.

    Article  PubMed  Google Scholar 

  3. Gluckman, E., Rocha, V., Boyer-Chammard, A., et al. (1997). Outcome of cord-blood transplantation from related and unrelated donors. Eurocord transplant group and the European blood and marrow transplantation group. The New England Journal of Medicine, 337, 373–381.

    Article  PubMed  CAS  Google Scholar 

  4. Gluckman, E., & Rocha, V. (2009). Cord blood transplantation: state of the art. Haematologica, 94, 451–454.

    Article  PubMed  Google Scholar 

  5. Broxmeyer, H. E. (2011). Insights into the biology of cord blood stem/progenitor cells. Cell Proliferation, 44, 55–59.

    Article  PubMed  Google Scholar 

  6. Zhang, Y., Chai, C., Jiang, X. S., Teoh, S. H., & Leong, K. W. (2006). Co-culture of umbilical cord blood CD34+ cells with human mesenchymal stem cells. Tissue Engineering, 12, 2161–2170.

    Article  PubMed  Google Scholar 

  7. Rebulla, P. (2002). Cord blood banking 2002: 112,010 of 7,914,773 chances. Transfusion, 42, 1246–1248.

    Article  PubMed  Google Scholar 

  8. Berz, D., McCormack, E. M., Winer, E. S., Colvin, G. A., & Quesenberry, P. J. (2007). Cryopreservation of hematopoietic stem cells. American Journal of Hematology, 82, 463–472.

    Article  PubMed  Google Scholar 

  9. Robinson, S. N., Simmons, P. J., Yang, H., Alousi, A. M., Marcos de Lima, J., & Shpall, E. J. (2011). Mesenchymal stem cells in ex vivo cord blood expansion. Best Practice & Research. Clinical Haematology, 24, 83–92.

    Article  CAS  Google Scholar 

  10. Bueno, C., Montes, R., & Menendez, P. (2010). The ROCK inhibitor Y-27632 negatively affects the expansion/survival of both fresh and cryopreserved cord blood-derived CD34+ hematopoietic progenitor cells: Y-27632 negatively affects the expansion/survival of CD34+ HSPCs. Stem Cell Reviews and Reports, 6, 215–223.

    Article  PubMed  CAS  Google Scholar 

  11. Welch, W. J., Kang, H. S., Beckmann, R. P., & Mizzen, L. A. (1991). Response of mammalian cells to metabolic stress; changes in cell physiology and structure/function of stress proteins. Current Topics im Microbiology and Immunology, 167, 31–55.

    Article  CAS  Google Scholar 

  12. Heng, B. C. (2009). Effect of Rho-associated kinase (ROCK) inhibitor Y-27632 on the post-thaw viability of cryopreserved human bone marrow-derived mesenchymal stem cells. Tissue & Cell, 41, 376–380.

    Article  CAS  Google Scholar 

  13. de Boer, F., Drager, A. M., Pinedo, H. M., et al. (2002). Early apoptosis largely accounts for functional impairment of CD34+ cells in frozen-thawed stem cell grafts. Journal of Hematotherapy & Stem Cell Research, 11, 951–963.

    Article  Google Scholar 

  14. de Boer, F., Drager, A. M., Pinedo, H. M., et al. (2002). Extensive early apoptosis in frozen-thawed CD34-positive stem cells decreases threshold doses for haematological recovery after autologous peripheral blood progenitor cell transplantation. Bone Marrow Transplantation, 29, 249–255.

    Article  PubMed  Google Scholar 

  15. Stroh, C., Cassens, U., Samraj, A. K., et al. (2002). The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells. The FASEB Journal, 16, 1651–1653.

    CAS  Google Scholar 

  16. Sasnoor, L. M., Kale, V. P., & Limaye, L. S. (2005). Prevention of apoptosis as a possible mechanism behind improved cryoprotection of hematopoietic cells by catalase and trehalose. Transplantation, 80, 1251–1260.

    Article  PubMed  CAS  Google Scholar 

  17. Baharvand, H., Salekdeh, G. H., Taei, A., & Mollamohammadi, S. (2010). An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nature Protocol, 5, 588–594.

    Article  CAS  Google Scholar 

  18. Gauthaman, K., Fong, C. Y., Subramanian, A., Biswas, & Bongso, A. (2010). ROCK inhibitor Y-27632 increases thaw-survival rates and preserves stemness and differentiation potential of human Wharton’s jelly stem cells after cryopreservation. Stem Cell Reviews and Report, 6, 665–676.

    Article  CAS  Google Scholar 

  19. Fleming, K. K., & Hubel, A. (2009). Cryopreservation of hematopoietic stem cells: emerging science, technology and issues. Transfusion Medicine and Hemotherapy, 34, 268–275.

    Article  Google Scholar 

  20. Gauthaman, K., Fong, C. Y., Cheyyatraivendran, S., Biswas, A., Choolani, M., & Bongso, A. (2012). Human umbilical cord Wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. Journal of Cellular Biochemistry, 113, 2027–2039.

    Article  PubMed  CAS  Google Scholar 

  21. Bakhshi, T., Zabriskie, R. C., Bodie, S., et al. (2008). Mesenchymal stem cells from the Wharton’s jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion, 48, 2638–2644.

    Article  PubMed  Google Scholar 

  22. Fong, C. Y., Gauthaman, K., Cheyyatraivendran, S., Lin, H. D., Biswas, A., & Bongso, A. (2012). Human umbilical cord Wharton’s jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo. Journal of Cellular Biochemistry, 113, 658–668.

    Article  PubMed  CAS  Google Scholar 

  23. Gauthaman, K., Fong, C. Y., Arularasu, S., et al. (2012). Human Wharton’s jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice. Journal of Cellular Biochemistry. doi:10.1002/jcb.24367.

  24. Fong, C. Y., Richards, M., Manasi, N., Biswas, A., & Bongso, A. (2007). Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reproductive Biomedicine Online, 15, 708–718.

    Article  PubMed  CAS  Google Scholar 

  25. Hayakawa, J., Joyal, E. G., Gildner, J. F., et al. (2010). Five percent dimethyl sulfoxide (DMSO) and pentastarch improves cryopreservation of cord blood cells over 10 % DMSO. Transfusion, 50, 2158–2166.

    Article  PubMed  CAS  Google Scholar 

  26. Fong, C. Y., Subramanian, A., Biswas, A., et al. (2010). Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton’s jelly stem cells. Reproductive Biomedicine Online, 21, 391–401.

    Article  PubMed  Google Scholar 

  27. Fan, C. G., Zhang, Q. J., & Zhou, J. R. (2011). Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Reviews and Reports, 7, 195–207.

    Article  PubMed  Google Scholar 

  28. Weiss, M. L., Anderson, C., Medicetty, S., et al. (2008). Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells, 26, 2865–2874.

    Article  PubMed  CAS  Google Scholar 

  29. Gauthaman, K., Fong, C. Y., Suganya, C. A., et al. (2012). Extra-embryonic human Wharton’s jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reproductive Biomedicine Online, 24, 235–246.

    Article  PubMed  Google Scholar 

  30. Subramanian, A., Shu-Uin, G., Kae-Siang, N., et al. (2012). Human umbilical cord Wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 113, 1886–1895.

    Article  PubMed  CAS  Google Scholar 

  31. Wang, X. Y., Lan, Y., He, W. Y., et al. (2008). Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood, 111, 2436–2443.

    Article  PubMed  CAS  Google Scholar 

  32. Huang, Y. C., Parolini, O., La Rocca, G., & Deng, L. (2012). Umbilical cord versus bone marrow-derived mesenchymal stromal cells. Stem Cells and Development, 21, 2900–2903.

    Article  PubMed  CAS  Google Scholar 

  33. Hanna, J., & Hubel, A. (2009). Preservation of stem cells. Organogenesis, 5, 134–137.

    Article  PubMed  Google Scholar 

  34. Al-Anazi, K. A. (2012). Autologous hematopoietic stem cell transplantation for multiple myeloma without cryopreservation. Bone Marrow Research, 2012, 917361.

    Article  PubMed  Google Scholar 

  35. Sasnoor, L. M., Kale, V. P., & Limaye, L. S. (2003). Supplementation of conventional freezing medium with a combination of catalase and trehalose results in better protection of surface molecules and functionality of hematopoietic cells. Journal of Hematotherapy & Stem Cell Research, 12, 553–564.

    Article  CAS  Google Scholar 

  36. Limaye, L. S., & Kale, V. P. (2001). Cryopreservation of human hematopoietic cells with membrane stabilizers and bioantioxidants as additives in the conventional freezing medium. Journal of Hematotherapy & Stem Cell Research, 10, 709–718.

    Article  CAS  Google Scholar 

  37. Garin, M. I., Apperley, J. F., & Melo, J. V. (2000). Ex vivo expansion and characterisation of CD34+ cells derived from chronic myeloid leukaemia bone marrow and peripheral blood, and from normal bone marrow and mobilised peripheral blood. European Journal of Haematology, 64, 85–92.

    Article  PubMed  CAS  Google Scholar 

  38. Hamann, K. J., Dowling, T. L., Neeley, S. P., Grant, J. A., & Leff, A. R. (1995). Hyaluronic acid enhances cell proliferation during eosinopoiesis through the CD44 surface antigen. Journal of Immunology, 154, 4073–4080.

    CAS  Google Scholar 

  39. Lemoli, R. M., Fogli, M., Fortuna, A., et al. (1993). Interleukin-11 stimulates the proliferation of human hematopoietic CD34+ and CD34+CD33-DR- cells and synergizes with stem cell factor, interleukin-3, and granulocyte-macrophage colony-stimulating factor. Experimental Hematology, 21, 1668–1672.

    PubMed  CAS  Google Scholar 

  40. Sasnoor, L. M., Kale, V. P., & Limaye, L. S. (2005). A combination of catalase and trehalose as additives to conventional freezing medium results in improved cryoprotection of human hematopoietic cells with reference to in vitro migration and adhesion properties. Transfusion, 45, 622–633.

    Article  PubMed  CAS  Google Scholar 

  41. Clarke, D. M., Yadock, D. J., Nicoud, I. B., Mathew, A. J., & Heimfeld, S. (2009). Improved post-thaw recovery of peripheral blood stem/progenitor cells using a novel intracellular-like cryopreservation solution. Cytotherapy, 11, 472–479.

    Article  PubMed  CAS  Google Scholar 

  42. Durand, E. M., & Zon, L. I. (2010). Newly emerging roles for prostaglandin E2 regulation of hematopoiesis and hematopoietic stem cell engraftment. Current Opinion in Hematology, 17, 308–312.

    Article  PubMed  CAS  Google Scholar 

  43. Hoggatt, J., Singh, P., Sampath, J., & Pelus, L. M. (2009). Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood, 113, 5444–5455.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the grant support provided by the Academic Research Fund, National University of Singapore (AcRF-NUS) (R-174-000-122-112) and National Medical Research Council (NMRC) (R-174-000-125-275).

Conflicts of interest

All authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ariff Bongso or Chui-Yee Fong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H.D., Bongso, A., Gauthaman, K. et al. Human Wharton’s Jelly Stem Cell Conditioned Medium Enhances Freeze-Thaw Survival and Expansion of Cryopreserved CD34+ Cells. Stem Cell Rev and Rep 9, 172–183 (2013). https://doi.org/10.1007/s12015-013-9426-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9426-7

Keywords

Navigation