Skip to main content
Log in

The action of osmolytes on the destructive effect of ionizing radiation, hyperthermia, microwave radiation, and ultrasound

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

New data on the influence of osmolytes (NaCl, glycerol) on the destructive effect of ionizing radiation, hyperthermia, microwave radiation and ultrasound were obtained from experiments with bacterial cells. The pattern of manifestation of the osmolyte protective effect is presented. It was found that the protective effect of osmolytes from damaging factors (antagonistic interaction) can be detected only within a certain range of agent “doses.” Inside this range, there is an optimum providing the maximum protection. It was shown that, to provide the highest antagonistic effect with increased intensity of one of the agents, a corresponding change in the intensity of the other agent involved in the interaction is required. It is concluded that, in addition to DNA damage, membrane injury and osmotic homeostasis system may be considered as critical targets in cell destruction after the combined action of various environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SHF:

superhigh frequency

UV:

ultraviolet radiation

References

  • Babicová, A., Havlínová, Z., Hroch, M., Řezáčová, M., Pejchal, J., Vávrová, J., and Chládek, J., In vivo study of radioprotective effect of NO-synthase inhibitors and acetyl-L-carnitine, Physiol. Res., 2013, vol. 62, pp. 701–710.

    PubMed  Google Scholar 

  • Bishayee, A, Rao, D.V., and Howell, R.W., Radiation protection by cysteamine against the lethal effects of intracellularly localized Auger electron, α-and β-particle emitting radionuclides, Acta Oncologica, 2000, vol. 39, pp. 713–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonura, T. and Smith, K.C., The involvement of indirect effects in cell-killing and DNA double-strand breakage in γ-irradiated Escherichia coli K-12, Int. J. Radiat. Biol., 1976, vol. 29, pp. 293–296.

    CAS  Google Scholar 

  • Bychkovskaya, I.B. and Ochinskaya, G.K., Study of the “oxygen effect” at different dose rate of radiation, Radiat. Biol. Radioecol., 1964, vol. 4, no. 1, pp. 63–66.

    CAS  Google Scholar 

  • El’piner, I.E., Biofizika ul’trazvuka (Ultrasound Biophysics), Moscow: Nauka, 1973.

    Google Scholar 

  • Konev, S.V. and Rudenok, A.N., The permeability and the heat resistance of the yeast cell cytoplasmic membrane, in Biofizika membrane (Membrane Biophysics), Kaunas, 1973, pp. 340–343.

    Google Scholar 

  • Konev, S.V., Aksentsev, S.A., and Chernitskii, E.A., Kooperativnye perekhody belkov v kletke (Cooperative Transitions of Proteins in Cells), Minsk: Nauka i tekhnika, 1970.

    Google Scholar 

  • Kuzin, A.M., Molekulyarnaya radiobiologiya kletochnogo yadra (Molecular Radiobiology of the Cell Nucleus), Moscow: Atomizdat, 1973.

    Google Scholar 

  • Lehninger, A. L., Biochemistry, New York: Worth Publ., 1972.

    Google Scholar 

  • Lin, P.-S., Kwock, L., and Hefter, K., Protection of heatinduced cytotoxicity by glycerol, J. Cell. Physiol., 1981, vol. 108, pp. 439–443.

    Article  CAS  PubMed  Google Scholar 

  • Ling, C.C., Spiro, I.J., Mitchell, J., and Stickler, R., The variation of OER with dose rate, Int. J. Radiat. Oncol. Biol. Phys., 1985, vol. 11, pp. 1367–1373.

    Article  CAS  PubMed  Google Scholar 

  • Maurice, B.B. and Ferraris, J.D., Intracellular organic osmolytes: function and regulation, J. Biol. Chem., 2008, vol. 283, pp. 7309–7313.

    Article  Google Scholar 

  • Morozov, I.I., Dubovik, B.V., and Petin, V.G., Cellular effects of microwaves of thermal intensity, Radiat. Biol. Radioecol., 1995, vol. 35, no. 1, pp. 47–52.

    CAS  Google Scholar 

  • Ormsby, R.J., Lawrence, M.D., Blyth, B.J., Bexis, K., Bezak, E., Murley, J.S., Grdina, D.J., and Sykes, P.J., Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent, Cell Biol. Toxicol., 2014, vol. 30, pp. 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Peak, J.G. and Peak, M.J., Protection by glycerol against the biological actions of near-ultraviolet light, Radiat. Res., 1980, vol. 83, pp. 553–558.

    Article  CAS  PubMed  Google Scholar 

  • Peak, J.G. and Peak, M.J., Similar ultraviolet action spectra for the protection by glycerol of transforming DNA against single-strand breaks and inactivation of biological activity, Radiat. Res., 1984, vol. 97, pp. 570–575.

    Article  CAS  PubMed  Google Scholar 

  • Petin, V.G. and Anokhin, Yu.N., Synergistic effects of simultaneous action of hyperthermia with physical and chemical agents, Med. Fiz., 2014, vol. 3, no. 63, pp. 57–65.

    Google Scholar 

  • Petin, V.G. and Kim, J.K., Synergistic Interaction and Cell Responses to Environmental Factors, New York: Nova Publishers, 2014.

    Google Scholar 

  • Petin, V.G. and Zhurakovskaya, G.P., Some general regularities of manifestation of the greatest synergetic interaction, Radiat. Biol. Radioecol., 2014, vol. 54, no. 6, pp. 589–596.

    CAS  Google Scholar 

  • Petin, V.G., Zhurakovskaya, G.P., and Kalugina, A.V., Microwave dosimetry and lethal effects in laboratory animals, in Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields, Kluwer Academic Publishers, 2000, pp. 375–382.

    Chapter  Google Scholar 

  • Petin, V.G., Zhurakovskaya, G.P., and Komarova, L.N., Radiobiologicheskie osnovy sinergicheskikh vzaimodeystvii v biosfere (Radiobiological Basis of Synergistic Interactions in the Biosphere), Moscow: GEOS, 2012.

    Google Scholar 

  • Raaphorst, G.P. and Kruuv, J., Effect of tonicity on radiosensitivity of mammalian cells, Int. J. Radiat. Biol., 1976, vol. 29, pp. 493–500.

    CAS  Google Scholar 

  • Raaphorst, G.P. and Kruuv, J., Effect of salt solutions on radiosensitivity of mammalian cells. II. Treatment with hypotonic solutions, Int. J. Radiat. Biol., 1977, vol. 32, pp. 89–101.

    CAS  Google Scholar 

  • Raaphorst, G.P., Frey, H.E., and Kruuv, J., Effect of salt solutions on radiosensitivity of mammalian cell. III. Treatment with hypertonic solutions, Int. J. Radiat. Biol., 1977, vol. 32, pp. 109–126.

    CAS  Google Scholar 

  • Romano, S.L., Raaphorst, G.P., and Dewey, W.C., The effects of various salt and sucrose solutions on the U.V.L. sensitivity of CHO cells, Int. J. Radiat. Biol., 1979, vol. 35, pp. 401–415.

    Article  CAS  Google Scholar 

  • Rozhdestvenskii, L.M., Mekhanizmy radiozaschitnogo effekta i indikatsiya effektivnosti radioprotektorov (Mechanisms of Radioprotective Effect and Indication of the Effectiveness of Radioprotectors), Moscow: Energoatomizdat, 1985.

    Google Scholar 

  • Voyutskii, S.S., Rastvory vysokomolekulyarnykh soedinenii (The Solutions of Macromolecular Compounds), Moscow: Goshimizdat, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Petin.

Additional information

Original Russian Text © I.I. Morozov, V.G. Petin, A.V. Khryachkova, 2017, published in Tsitologiya, 2017, Vol. 59, No. 5, pp. 369–374.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, I.I., Petin, V.G. & Khryachkova, A.V. The action of osmolytes on the destructive effect of ionizing radiation, hyperthermia, microwave radiation, and ultrasound. Cell Tiss. Biol. 11, 399–404 (2017). https://doi.org/10.1134/S1990519X17050042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X17050042

Keywords

Navigation