Skip to main content
Log in

Inactivation of Planktonic Microorganisms by Acoustic Shock Waves

  • BIOPHYSICAL CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A study is performed of the inactivation of planktonic bacteria Escherichia coli and Bacillus subtilis by acoustic shock waves generated by a nanosecond laser pulse that causes rapid local heating, growth, and collapse of vapor bubbles in a physiological saline with bacteria containing organic dyes as thermosensitizers. The role of strong electronically excited states of dyes in the local heating of a medium is shown. The dependence of the efficiency of microorganism inactivation on the type and concentration of dyes, the power density of the exciting radiation, and the distance from the source of shock wave generation is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. S. Simonsen, J. W. Tapsall, B. Allegranzi, et al., Bull. World Health Org. 82, 928 (2004).

    PubMed  Google Scholar 

  2. C. A. Arias and B. E. Murray, N. Engl. J. Med. 360, 439 (2009). https://doi.org/10.1056/NEJMp0804651

    Article  CAS  PubMed  Google Scholar 

  3. M. Wilson, J. Photochem. Photobiol. 3, 412 (2004). https://doi.org/10.1039/b211266c

    Article  CAS  Google Scholar 

  4. M. Donlan, Emerg. Infect. Dis. 8, 881 (2002). https://doi.org/10.3201/eid0809.020063

    Article  PubMed  PubMed Central  Google Scholar 

  5. C. A. Fux, J. W. Costerton, P. S. Stewart, et al., Trends Microbiol. 13, 34 (2005). https://doi.org/10.1016/j.tim.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  6. P. W. Taylor, P. D. Stapleton, and J. Luzio, Drug Discov. Today 7, 1086 (2002). https://doi.org/10.1016/s1359-6446(02)02498-4

    Article  PubMed  Google Scholar 

  7. M. R. Hamblin, Curr. Opin. Microbiol. 33, 67 (2016). https://doi.org/10.1016/j.mib.2016.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. L. Huang, T. Dai, and M. R. Hamblin, Methods Mol. Biol. 635, 155 (2010). https://doi.org/10.1007/978-1-60761-697-9_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. N. Kashef, Y. Huang, and M. R. Hamblin, Nanophotonics 6, 853 (2017). https://doi.org/10.1515/nanoph-2016-0189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. R. Hamblin and T. Hasan, Photochem. Photobiol. Sci. 3, 436 (2004). https://doi.org/10.1039/b311900a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. G. Taraszkiewicz, G. Fila, M. Grinholc, et al., Int. J. Biomed. Res. 5, 150653 (2013). https://doi.org/10.1155/2013/150653

    Article  CAS  Google Scholar 

  12. F. Vatansever, W. de Melo, P. Avci, et al., FEMS Microbiol. Rev. 37, 955 (2013). https://doi.org/10.1111/1574-6976.12026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. N. Letuta, U. G. Letuta, and S. N. Pashkevich, Biophysics 64, 576 (2019). https://doi.org/10.1134/S0006350919040092

    Article  CAS  Google Scholar 

  14. A. T. Ishemgulov, S. N. Letuta, S. N. Pashkevich, et al., Opt. Spectrosc. 123, 828 (2017). https://doi.org/10.1134/S0030400X1711008X

    Article  CAS  Google Scholar 

  15. S. N. Letuta, S. N. Pashkevich, A. T. Ishemgulov, et al., J. Photochem. Photobiol. B 163, 232 (2016). https://doi.org/10.1016/j.jphotobiol.2016.08.036

    Article  CAS  PubMed  Google Scholar 

  16. V. S. Letokhov, Nonlinear Selective Photoprocesses in Atoms and Molecules (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  17. B. Nickel and G. Roden, Ber. Bunsenges. Phys. Chem. 81, 281 (1977). https://doi.org/10.1002/bbpc.19770810308

    Article  CAS  Google Scholar 

  18. S. Tobita, Y. Kaisu, H. Kobayashi, et al., J. Chem. Phys. 81, 2962 (1984). https://doi.org/10.1063/1.448046

    Article  CAS  Google Scholar 

  19. G. C. Orner and M. R. Topp, Chem. Phys. Lett. 36, 295 (1975). https://doi.org/10.1016/0009-2614(75)80240-5

    Article  CAS  Google Scholar 

  20. H. B. Lin and M. R. Topp, Chem. Phys. Lett. 48, 251 (1977). https://doi.org/10.1016/0009-2614(77)80309-6

    Article  CAS  Google Scholar 

  21. V. L. Ermolaev and V. A. Lyubimtsev, Opt. Spectrosc. 56, 630 (1984).

    Google Scholar 

  22. C. Nagaoka, M. Fujita, T. Takemura, et al., Chem. Phys. Lett. 123, 489 (1986). https://doi.org/10.1016/0009-2614(86)80048-3

    Article  CAS  Google Scholar 

  23. K. K. Rohatgi-Mukherjee and A. K. Mukhopadhyay, Indian J. Pure Appl. Phys. 14, 481 (1976).

    CAS  Google Scholar 

  24. V. V. Ryl’kov and E. A. Cheshev, Dokl. Akad. Nauk SSSR 281, 648 (1985).

    Google Scholar 

  25. Laser Applications in Medicine and Biology, Ed. by M. L. Wolbarsht (Plenum, New York, 1977), p. 175. https://doi.org/10.1007/978-1-4615-7326-5

  26. V. V. Ryl’kov and E. A. Cheshev, Opt. Spectrosc. 63, 462 (1987).

    Google Scholar 

  27. S. N. Letuta, Vestn. OGU, No. 5, 88 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Ishemgulov.

Ethics declarations

This study was supported by the Russian Ministry of Education and Science, FSGU-2020-0003.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letuta, S.N., Pashkevich, S.N., Ishemgulov, A.T. et al. Inactivation of Planktonic Microorganisms by Acoustic Shock Waves. Russ. J. Phys. Chem. 95, 848–854 (2021). https://doi.org/10.1134/S0036024421040142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421040142

Keywords:

Navigation