Skip to main content
Log in

Proliferation of cultured glioma cells mediated by coenzyme Q10 under conditions of serum deprivation

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The effect of coenzyme Q10 on glioma-cell proliferation under serum-deprived conditions has been studied. Our results have shown that the addition of coenzyme Q10 into a serum-free culture medium enhances cell viability, stimulates cell growth, restores mitochondrial potential, and increases the quantity of energized mitochondria. It is found that coenzyme Q10-induced glioma-cell proliferation in conditions of serum deficiency is a result of an intracellular reduced glutathione concentration with subsequent activation of protein kinase C, ERK1/2, and phosphoinositol-3-kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

EGF:

epidermal growth factor

FBS:

fetal bovine serum

GSH:

reduced glutathione

H2DCF-DA:

2,7-dichlorodihydrofluorescein diacetate

MCB:

monochlorobimane

PI3K:

phosphoinositol-3-kinase

PKC:

protein kinase C

S1P:

sphingosine-1-phosphate

SMPD:

sphingomyelin phosphodiesterase

SphK:

sphingosine kinase

References

  • Bentinger, M., Brismar, K., and Dallner, G., The antioxidant role of coenzyme Q, Mitochondrion, 2007, vol. 7S, pp. 41–50.

    Article  Google Scholar 

  • Brea-Calvo, G., Rodríguez-Hernández, Á., Fernández-Ayala, D.J.M., Navas, P., and Sánchez-Alcázar, J.A., Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell lines, Free Rad. Biol. Med., 2006, vol. 40, pp. 1293–1302.

    Article  CAS  PubMed  Google Scholar 

  • Burova, E.B., Vasilenko, K.P., Antonov, V.G., and Nikol’skii, N.N., Transactivation of the epidermal growth factor receptor by oxidized glutathione and its pharmacological analogue glutoxim in A431 cells, Dokl. Biol. Sci., 2005, vol. 404, pp. 392–394.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C.L., Lin, C.F., Chang, W.T., Huang, W.C., Teng, C.F., and Lin, Y.S., Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway, Blood, 2008, vol. 111, pp. 4365–4374.

    Article  CAS  PubMed  Google Scholar 

  • Conklin, K.A., Coenzyme Q10 for prevention of anthracycline-induced cardiotoxicity, Integr. Cancer Ther., 2005, vol. 4, pp. 110–130.

    Article  CAS  PubMed  Google Scholar 

  • Crane, F.L., New functions for coenzyme Q, Protoplasma, 2000, vol. 213, pp. 127–133.

    Article  CAS  Google Scholar 

  • Davis, R.J., Signal transduction by the JNK group of MAP kinases, Cell, 2000, vol. 103, pp. 239–252.

    Article  CAS  PubMed  Google Scholar 

  • De Cabo, R., Cabello, R., Rios, M., Lopez-Lluch, G., Ingram, D.K., Lane, M.A., and Navas, P., Calorie restriction attenuates age-related alterations in the plasma membrane antioxidant system in rat liver, Exp. Gerontol., 2004, vol. 39, pp. 297–304.

    Article  PubMed  Google Scholar 

  • Du, L., Lyle, C.S., Obey, T.B., Gaarde, W.A., Muir, J.A., Bennett, B.L., and Chambers, T.C., Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity. Evidence that mitotic Bcl-2 phosphorylation is JNK-independent, J. Biol. Chem., 2004, vol. 279, pp. 11957–11966.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Díaz, C., Barroso, M.P., and Navas, P., Plasma membrane coenzyme Q10 and growth control, Protoplasma, 2000, vol. 214, pp. 19–23.

    Article  Google Scholar 

  • Groneberg, D.A., Kindermann, B., Althammer, M., Klapper, M., Vormann, J., Littarru, G.P., and Doring, F., Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells, Int. J. Biochem. Cell Biol., 2005, vol. 37, pp. 1208–1218.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, K.R., Becker, K.P., Facchinetti, M.M., Hannun, Y.A., and Obeid, L.M., PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane, J. Biol. Chem., 2002, vol. 277, pp. 35257–35262.

    Article  CAS  PubMed  Google Scholar 

  • Kato, F., Tanaka, M., and Nakamura, K., Rapid fluorometric assay for cell viability and cell growth using nucleic acid staining and cell lysis agents, Toxicol. in Vitro, 1999, vol. 13, pp. 923–929.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.H., Kim, J.H., Song, W.K., Kim, J.H., and Chun, J.S., Sphingosine 1-phosphate activates Erk-1/-2 by transactivating epidermal growth factor receptor in Rat-2 cells, Life, 2000, vol. 50, pp. 119–124.

    CAS  PubMed  Google Scholar 

  • Krylova, N.G., Monitoring of erythrocyte redox-properties with use of 2,7-dichlorofluorescein, in Molodezh’ v nauke–2007: pril. k zhurn. Vestsi NAN Belarusi. 4 (3): 22–26 (Young People in Science–2007: Supplement to Proc. Natl. Acad. Sci. Belarus. 4 (3): 22–26), Minsk: Belarus, Nauka, 2008.

    Google Scholar 

  • Littarru, P., and Tiano, L., Clinical aspects of coenzyme Q10: an update, Nutrition, 2010, vol. 26, pp. 250–254.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B. and Hannun, Y.A., Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione, J. Biol. Chem., 1997, vol. 272, pp. 6281–16287.

    Google Scholar 

  • López-Lluch, G., Barroso, M.P., Martín, S.F., Fernández-Ayala, D.J.M., Gómez-Díaz, C., Villalba, J.M., and Navas, P., Role of plasma membrane coenzyme Q on the regulation of apoptosis, BioFactors, 1999, vol. 9, pp. 171–177.

    Article  PubMed  Google Scholar 

  • Makino, N., Mochizuki, Y., Bannai, S., and Sugita, Y., kinetic studies on the removal of extracellular hydrogen peroxide by cultured fibroblasts, J. Biol. Chem., 1994, vol. 269, pp. 1020–1025.

    CAS  PubMed  Google Scholar 

  • Mansat, V., Laurent, G., Levade, T., Bettaieb, A., and Jaffrezou, J.-P., The protein kinase c activators phorbol esters and phosphatidylserine inhibit neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin, Cancer Res., 1997, vol. 57, pp. 5300–5304.

    CAS  PubMed  Google Scholar 

  • Martin, S.F., Navarro, F., Forthoffer, N., Navas, P., and Villalba, J.M., Neutral magnesium-dependent sphingomyelinase from liver plasma membrane: purification and inhibition by ubiquinol, J. Bioenerg. Biomembr., 2001, vol. 33, pp. 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Martín, S.F., Gómez-Díaz, C., Bello, R.I., Navas, P., and Villalba, J.M., Inhibition of Neutral Mg2+-dependent sphingomyelinase byubiquinol-mediated plasma membrane electron transport, Protoplasma, 2003, vol. 221, pp. 109–116.

    Article  PubMed  Google Scholar 

  • Navarro, F., Villalba, J.M., Crane, F.L., McKellar, W.C., and Navas, P., A phospholipid-dependent NADH-coenzyme Q reductase from liver plasma membrane, Biochem. Biophys. Res. Commun., 1995, vol. 212, pp. 138–143.

    Article  CAS  PubMed  Google Scholar 

  • Navas, P., Fernández-Ayala, D.J.M., Martín, S.F., López-Lluch, G., de Cabo, R., Rodriguez-Aguilera, J.C., and Villalba, J.M., Ceramide-dependent caspase 3 activation is prevented by coenzyme Q from plasma membrane in serum-deprived cells, Free Rad. Res., 2002, vol. 364, pp. 369–374.

    Article  Google Scholar 

  • Navas, P., Villalba, J.M., and de Cabo, R., The importance of plasma membrane coenzyme Q in aging and stress responses, Mitochondrion, 2007, vol. 7S, pp. 34–40.

    Article  Google Scholar 

  • Nordman, T., Xia, L., Björkhem-Bergman, L., Damdimopoulos, A., Nalvarte, I., Arnér, E.S., Spyrou, G., Eriksson, L.C., Björnstedt, M., and Olsson, J.M., Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase, BioFactors, 2003, vol. 18, pp. 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Smiley, S.T., Reers, M., Mottola-Hartshorn, C., Lin, M., Chen, A., Smith, T.W., Steele, G.D., and Chen, L.B., Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregateforming lipophilic cation JC-1, Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, pp. 3671–3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soni, A., Verma, M., Aggarwal, S., Kaushal, V., and Verma, Y., Role of coenzyme Q10 in current oncology practice: substance or shadow!, OncoExpert, 2015, vol. 1, pp. 14–22.

    Google Scholar 

  • Thornton, T.M. and Rincon, M., Non-classical p38 MAP kinase functions: cell cycle checkpoints and survival, Int. J. Biol. Sci., 2009, vol. 5, pp. 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Trachootham, D., Lu, W., Ogasawara, M.A., Rivera-del Valle, N., and Huang, P., Redox regulation of cell survival, Antioxid. Rerox Signal., 2008, vol. 10, pp. 1343–1374.

    Article  CAS  Google Scholar 

  • Ueda, N., Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate, Int. J. Mol. Sci., 2015, vol. 16, pp. 5076–5124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaupel, P., Tumor microenvironmental physiology and its implications for radiation oncology, Semin. Radiat. Oncol., 2004, vol. 14, pp. 198–206.

    Article  PubMed  Google Scholar 

  • Villalba, J.M. and Navas, P., Plasma membrane redox system in the control of stress-induced apoptosis, Antioxid. Redox. Signal., 2000, vol. 2, pp. 213–230.

    Article  CAS  PubMed  Google Scholar 

  • Wada, T. and Penninger, J.M., Mitogen-activated protein kinases in apoptosis regulation, Oncogene, 2004, vol. 23, pp. 2838–2849.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Mutual regulation of receptor-mediated cell signalling and endocytosis: EGF receptor system as an example, in Molecular Regulation of Endocytosis, Rijeka: InTech Publ., 2012, pp. 301–330.

    Google Scholar 

  • Wrona, M. and Wardmann, P., Properties of the radical intermediate obtained on oxidation of 2′,7′-dichlorodihydrofluorescein, a probe for oxidative stress, Free Rad. Biol. Med., 2006, vol. 41, pp. 657–667.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Krylova.

Additional information

Original Russian Text © N.G. Krylova, T.A. Kulahava, S.V. Koran, G.N. Semenkova, 2017, published in Tsitologiya, 2017, Vol. 59, No. 2, pp. 109–116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylova, N.G., Kulahava, T.A., Koran, S.V. et al. Proliferation of cultured glioma cells mediated by coenzyme Q10 under conditions of serum deprivation. Cell Tiss. Biol. 11, 220–226 (2017). https://doi.org/10.1134/S1990519X17030063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X17030063

Keywords

Navigation