Skip to main content
Log in

Regulation of vascular endothelial growth factor production in mouse thymic epithelial cell lines

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) in adults is synthesized in small amounts by thymic epithelial cells and is important for the maintenance of vascular homeostasis. However, its role dramatically increases during the process of thymic reconstitution after damage caused by radiation, chemo-, or hormonotherapy. The aim of the study was to evaluate the influence of different factors on VEGF production by mouse thymic epithelial cells in vitro. As a model, two cell lines were used: cortical cTEC1-2 and medullar mTEC3-10 cells. These cells were characterized by their ability to synthesize VEGF mRNA and VEGF protein, as well as by the presence of VEGF receptors. No VEGFR1 or VEGFR2 mRNA expression was observed in these cells, while NRP-1 mRNA was expressed at a low level. An ELISA test showed that cTEC1-2 cells produced VEGF about 30 times more than mTEC3-10 cells. These cell lines, when exposed to cytokines, hormonal factors, or thymocytes, responded differently. Keratinocyte growth factor (KGF) enhanced VEGF mRNA expression, as well as VEGF protein production, in medullar cells, but down-regulated VEGF mRNA synthesis in cortical cells. Dexamethasone suppressed the levels of VEGF mRNA expression and its protein production in cortical cells, while in medullar cells only VEGF production was reduced. Introduction of IL-7, IL-1β, or murine thymocytes increased, while administration of semaphorin-3A, SDF-1α, or ACTH decreased, VEGF production by cortical epithelial cells with no influence on medullar cells. We suggest that our data, obtained in vitro, can serve for further development of special strategies directed for regulation of VEGF synthesis in the thymic epithelial cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ELISA:

enzyme-linked immunosorbent assay

RT-PCR:

reverse transcription–polymerase chain reaction

ACTH:

adrenocorticotropic hormone

References

  • Adkins, B., Gandour, D., Strober, S., and Weissman, I., Total lymphoid irradiation leads to transient depletion of the mouse thymic medulla and persistent abnormalities among medullary stromal cells, J. Immunol., 1988, vol. 140, pp. 3373–3379.

    CAS  PubMed  Google Scholar 

  • Agreste, F.R., Bombonato, P.P., Nogueira, K., dos Santos, A.C., da Cuncha Barreto-Vianna, A.R., and Mendes de Lima, E.M., VEGF system in dog’s thymus—temporal expression, Open J. Vet. Med., 2015, vol. 5, pp. 211–217.

    Article  Google Scholar 

  • Alpdogan, O., Hubbard, V.M., Smith, O.M., Patel, N., Lu, S., Goldberg, G.L., Gray, D.H., Feinman, J., Kochman, A.A., Eng, J.M., Suh, D., Muriglan, S.J., Boyd, R.L., and van den Brink, M.R., Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration, Blood, 2006, vol. 107, pp. 2453–2460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger, M.E., Christensen, D.M., Lowry, P.C., Jones, O.W., and Wiley, A.L., Medical management of radiation injuries: current approaches, Occup. Med. (Lond.), 2006, vol. 56, pp. 162–172.

    Article  CAS  Google Scholar 

  • Carrio, R., Altman, N.H., and Lopez, D.M., Downregulation of interleukin-7 and hepatocyte growth factor in the thymic microenvironment is associated with thymus involution in tumor-bearing mice, Cancer Immunol. Immunother., 2009, vol. 58, pp. 2059–2072.

    Article  CAS  PubMed  Google Scholar 

  • Cimpean, A.M., Raica, M., Encica, S., Cornea, R., and Bocan, V., Immunohistochemical expression of vascular endothelial growth factor A (VEGF), and its receptors (VEGFR1, 2) in normal and pathologic conditions of the human thymus, Ann. Anat., 2008, vol. 190, pp. 238–245.

    Article  PubMed  Google Scholar 

  • Cohen, O., Kfir-Erenfeld, S., Spokoini, R., Zilberman, Y., Yefenof, E., and Sionov, R.V., Nitric oxide cooperates with glucocorticoids in thymic epithelial cell-mediated apoptosis of double positive thymocytes, Int. Immunol., 2009, vol. 21, pp. 1133–1123.

    Article  Google Scholar 

  • Corbel, C., Lemarchandel, V., Thomas-Vaslin, V., Pelus, A.-S., Agboton, C., and Romeo, P.-H., Neuropilin 1 and CD25 co-regulation during early murine thymic differentiation, Dev. Comp. Immunol., 2007, vol. 31, pp. 1082–1094.

    Article  CAS  PubMed  Google Scholar 

  • Cuddihy, A.R., Ge, S., Zhu, J., Jang, J., Chidgey, A., Thurston, G., Boyd, R., and Crooks, G.M., VEGF-mediated cross-talk within the neonatal murine thymus, Blood, 2009, vol. 113, pp. 2723–2731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson, M., Morkowski, S., Lehar, S., Gillard, G., Beers, C., Dooley, J., Rubin, J., Rudensky, A., and Farr, A., Regulation of thymic epithelium by keratinocyte growth factor, Blood, 2002, vol. 100, pp. 3269–3278.

    Article  CAS  PubMed  Google Scholar 

  • Fedorova, E.S., Polyakova, V.O., Konovalov, S.S., and Kvetnoy, I.M., Expression of serotonin and vessel endothelial growth factor (VEGF) in human thymus in aging involution, Adv. Gerontol., 2009, vol. 22, no. 1, pp. 167–171.

    CAS  PubMed  Google Scholar 

  • Ferrara, N., Gerber, H.-P., and LeCouter, J., The biology of VEGF and its receptors, Nat. Med., 2003, vol. 9, pp. 669–676.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, F., Lepelletier, Y., Smaniotto, S., Hadj-Slimane, R., Dardenne, M., Hermine, O., and Savino, W., Inhibitory effect of semaphorin-3A, a known axon guidance molecule, in the human thymocyte migration induced by CXCL12, J. Leukoc. Biol., 2012, vol. 91, pp. 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Gruver, A.L. and Sempowski, G.D., Cytokines, leptin, and stress-induced thymic atrophy, J. Leukoc. Biol., 2008, vol. 84, pp. 915–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman-Morales, J., El-Gabalawy, H., Pham, M.H., Tran-Khanh, N., McKee, M.D., Wu, W., Centola, M., and Hoemann, C.D., Effect of chitosan particles and dexamethasone on human bone marrow stromal cell osteogenesis and angiogenic factor secretion, Bone, 2009, vol. 45, pp. 617–626.

    Article  CAS  PubMed  Google Scholar 

  • Hegeman, M.A., Hennus, M.P., Cobelens, P.M., Kavelaars, A., Jansen, N.J.G., Schiltz, M.J., Vught, A.J., and Heijnen, C.J., Dexamethasone attenuates VEGF expression and inflammation but not barrier dysfunction in a murine model of ventilator-induced lung injury, PLoS One, 2013, vol. 8, p. e57374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai, M. and Mizuochi, T., Culture and caracterization of thymic epithelial cell lines, Methods Mol. Biol., 2007, vol. 380, pp. 107–123.

    Article  CAS  PubMed  Google Scholar 

  • Kasai, M., Hirokawa, K., Kejino, K., Ogasawara, K., Tatsumi, M., Hermel, E., Monaco, J., and Mizuochi, T., Difference in antigen presentation pathways between cortical and medullary thymic epithelial cells, Eur. J. Immunol., 1996, vol. 26, pp. 2101–2107.

    Article  CAS  PubMed  Google Scholar 

  • Lepelletier, Y., Smaniotto, S., Hadj-Slimane, R., Villa-Verde, D.M.S., Nogueira, A.C., Dardenne, M., Hermine, O., and Savino, W., Control of human thymocyte migration by neuropilin-1/semaphorin-3a-mediated interaction, Proc. Natl. Acad. Sci. USA., 2007, vol. 104, pp. 5545–5550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min, D., Panoskaltsis-Mortari, A., Kuro-O, M., Hollander, G.A., Blazar, B.R., and Weinberg, K.I., Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging, Blood, 2007, vol. 109, pp. 2529–2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, S.M., Terszowski, G., Blum, C., Haller, C., Anquez, V., Kuschert, S., Carmeliet, P., Augustin, H.G., and Rodewald, H.-R., Gene targeting of VEGF-A in thymus epithelium disrupts thymus blood vessel architecture, Proc. Natl. Acad. Sci. USA., 2005, vol. 102, pp. 10587–10592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Narita, K., Fujii, T., Ishiwata, T., Yamamoto, T., Kawamoto, Y., Kawahara, K., Nakazawa, N., and Naito, Z., Keratinocyte growth factor induces vascular endothelial growth factor-A expression in colorectal cancer cells, Int. J. Oncol., 2009, vol. 34, pp. 355–360.

    CAS  PubMed  Google Scholar 

  • Neuhaus, T., Stier, S., Totzke, G., Gruenewald, E., Fronhoff, S., Sachinidis, A., Vetter, H., and Ko, Y.D., Stromal cell-derived factor 1alpha (SDF-1alpha) induces geneexpression of early growth response-1 (Egr-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation, Cell Prolif., 2003, vol. 36, pp. 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.-J., Kim, M.N., Kim, J.-G., Bae, Y.-H., Bae, M.-K., Wee, H.-J., Kim, T.-W., Kim, B.-S., Kim, J.-B., Bae, S.-K., and Yoon, S., Up-regulation of VEGF expression by NGF that enhances reparative angiogenesis during thymic regeneration in adult rat, Biochim. Biophys. Acta, 2007, vol. 1773, pp. 1462–1472.

    Article  CAS  PubMed  Google Scholar 

  • Roskoski, R., Vascular endothelial growth factor (VEGF) signaling in tumor progression, Crit. Rev. Oncol. Hematol., 2007, vol. 62, pp. 179–213.

    Article  PubMed  Google Scholar 

  • Rossi, S., Jeker, L., Ueno, T., Kuse, S., Keller, M., Zuklys, S., Gudkov, A., Takahama, Y., Krenger, W., Blazar, B.A., and Hollander, G.A., Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells, Blood, 2007, vol. 109, pp. 3803–3811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharova, N.I., Donetskova, A.D., Toptygina, A.P., Mitin, A.N., Litvina, M.M., Burmenskaya, O.V., Trofimov, D.Yu., Suhih, G.T., Alekseev, L.P., and Yarilin, A.A., Expression of cytokine gene and secretion of cytokines by epithelial and lymphoid cells of human thymus, Immunologiya, 2008, vol. 29, no. 6, pp. 329–334.

    CAS  Google Scholar 

  • Shifren, J.L., Mesiano, S., Taylor, R.N., Ferrara, N., and Jaffe, R.B., Corticotropin regulates vascular endothelial growth factor expression in human fetal adrenal cortical cells, J. Clin. Endocrinol. Metab., 1998, vol. 83, pp. 1342–1347.

    CAS  PubMed  Google Scholar 

  • Stepanova, O.I., Krylov, A.V., Lioudyno, V.I., and Kisseleva, E.P., Gene expression of VEGF-A, VEGF-C, and their receptors in murine lymphocytes and macrophages, Biochemistry (Moscow), 2007, vol. 72, no. 11, pp. 1194–1198.

    Article  CAS  Google Scholar 

  • Talaber, G., Tuckermann, J.P., and Okret, S., ACTH controls thymocyte homeostasis independent of glucocorticoids, FASEB J., 2015, vol. 29, pp. 2526–2534.

    Article  CAS  PubMed  Google Scholar 

  • Traves, M.D., Gomez-Sanchez, C.E., and Soma, K.K., Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function, Am. J. Physiol. Endocrinol. Metab., 2011, vol. 301, pp. E11–E24.

    Article  Google Scholar 

  • Van Vliet, E., Melis, M., and van Ewijk, W., The influence of dexamethasone treatment on the lymphoid and stromal composition of the mouse thymus: a flow cytometric and immunohistological analysis, Cell. Immunol., 1986, vol. 103, pp. 229–240.

    Article  PubMed  Google Scholar 

  • Yarilin, A.A. and Belyakov, I.M., Cytokines in the thymus: production and biological effects, Curr. Med. Chem., 2004, vol. 11, pp. 447–464.

    Article  CAS  PubMed  Google Scholar 

  • Yla-Herttuala, S., Rissanen, T.T., Vajanto, I., and Hertikainen, J., Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine, J. Am. Coll. Cardiol., 2007, vol. 49, pp. 1015–1026.

    Article  PubMed  Google Scholar 

  • Zilberman, Y., Zafrir, E., Ovadia, H., Yefenof, E., Guy, R., and Sionov, R.V., The glucocorticoid receptor mediates the thymic epithelial cell-induced apoptosis of CD4+CD8+ thymic lymphoma cells, Cell. Immunol., 2004, vol. 227, pp. 12–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Rutto.

Additional information

Original Russian Text © K.V. Rutto, I.V. Lyamina, I.V. Kudryavtsev, E.P. Kiseleva, 2016, published in Tsitologiya, 2016, Vol. 58, No. 6, pp. 436–443.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutto, K.V., Lyamina, I.V., Kudryavtsev, I.V. et al. Regulation of vascular endothelial growth factor production in mouse thymic epithelial cell lines. Cell Tiss. Biol. 10, 387–394 (2016). https://doi.org/10.1134/S1990519X16050126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X16050126

Keywords

Navigation