Skip to main content
Log in

Intranuclear ubiquitin-immunopositive structures in human substantia nigra neurons

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Marinesco bodies were discovered in substantia nigra neurons of human brain in 1902. The relationships between these intranuclear inclusions and the other structures of the cellular nucleus are still obscure. The aim of this study is to elucidate the morphological and cytochemical peculiarities of intranuclear ubiquitin-immunopositive bodies in the substantia nigra neurons of human brain and to evaluate the interconnections of these peculiarities with nucleolus by means of light microscopy, immunocytochemistry, and confocal laser microscopy. It is found that up to 20% of neurons in substantia nigra of human brain contain ubiquitin-immunopositive Marinesco bodies. These rounded structures are 1–8 μm—more often 2–4 μm—in diameter. Only one-third of them are tightly adjacent to the nucleolus. By a method of silver impregnation of argentophilic proteins associated with nucleolar organizer, the absence was shown of argentophilic proteins, which are characteristic for the nucleolus, in Marinesco bodies. Special ubiquitin-positive substantially smaller structures (less than 1 μm) are revealed in the neurons’ nuclei along with Marinesco bodies. These structures are probably the initial forms in the formation of Marinesco bodies. The existence of two types of ubiquitin-immunopositive intranuclear bodies is revealed by means of confocal microscopy: one has high intensity of immunofluorescence, and the other has low intensity. Heterogeneous distribution of immunopositive product is characteristic of the former. The presence of DNA in Marinesco bodies is detected by using SYTOX Green fluorescent dye. The absence of peripheral heterochromatin zone and weak susceptibility to toluidine blue together with the presence of DNA and the absence of argentophilic proteins suggests substantial structural and chemical differences between Marinesco bodies and nucleoli, which argues against the idea that the detected bodies are modified nucleoli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anraku, S., Miura, C., Mori, H., and Fukutomi, T., Histological studies on the intranuclear inclusions of the melanin-pigmented nerve cells in the substantia nigra and the nucleus loci caerulei, Kurume Med., 1970, vol. J 17, pp. 211–224.

    Article  Google Scholar 

  • Batalova, F.M., Stepanova, I.S., and Bogolyubov, D.S., Cajal bodies in nuclei of oocytes from the scorpion fly Panorpa communis, Tsitologiia, 2000, vol. 42, no. 11 pp. 1037–5.

    PubMed  CAS  Google Scholar 

  • Blow, J.J., and Dutta, A., Preventing re-replication of chromosomal DNA, Nat. Rev. Mol. Cell Biol., 2005, vol. 6, pp. 476–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cassel, J.A. and Reitz, A.B., Ubiquilin-2 (UBQLN2) binds with high affinity to the C-terminal region of TDP-43 and modulates TDP-43 levels in H4 cells: characterization of inhibition by nucleic acids and 4-aminoquinolines, Biochim. Biophys. Acta, 2013, vol. 1834, pp. 964–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derenzini, M., The AgNORs, Micron, 2000, vol. 31, pp. 117–4.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, D.W., Wertkin, A., Kress, Y., Ksiezak-Reding, H., and Yen, S.H., Ubiquitin immunoreactive structures in normal human brains. Distribution and developmental aspects, Lab. Invest., 1990, vol. 63, pp. 87–4.

    PubMed  CAS  Google Scholar 

  • Gall, J.G., Cajal bodies: the first 100 years, Annu. Rev. Cell Dev. Biol., 2000, vol. 16, pp. 273–4.

    Article  PubMed  CAS  Google Scholar 

  • Gall, J.G., Tsvetkov, A., Wu, Z., and Murphy, C., Is the sphere organelle/coiled body a universal nuclear component? Dev. Genet., 1995, vol. 16, pp. 25–4.

    Article  PubMed  CAS  Google Scholar 

  • Gavrilov, A.A. and Razin, S.V., Compartmentalization of the cell nucleus and spatial organization of the genome, Mol. Biol. (Moscow), 2015, vol. 49, no. 1 pp. 26–5.

    Article  CAS  Google Scholar 

  • Grigor’ev, I.P., Ultrastructural restructurings in the rat cerebral cortex after ascorbic acid administration into the ventricular cerebrospinal fluid, Arkh. Anat. Gistol. Embriol., 1988, vol. 95, no. 11 pp. 26–5.

    PubMed  Google Scholar 

  • Grigor’ev, I.P. and Otellin, V.A., Intranuclear membranous inclusions in the CNS neurons of rats detectable after the administration of ascorbic acid and 6-hydroxydopamine, Tsitologiia, 1990, vol. 32, no. 12 pp. 1157–5.

    PubMed  Google Scholar 

  • Hirai, S., Morimatsu, M., Muramatsu, A., Eto, F., and Yoshikawa, M., Aging of the substantia nigra, with special reference to Marinesco body, Nippon Ronen Igakkai Zasshi, 1977, vol. 14, pp. 6–4.

    Article  PubMed  CAS  Google Scholar 

  • Kakita, A., Oyanagi, K., Nagai, H., and Takahashi, H., Eosinophilic intranuclear inclusions in the hippocampal pyramidal neurons of a patient with amyotrophic lateral sclerosis, Acta Neuropathol., 1997, vol. 93, pp. 532–4.

    Article  PubMed  CAS  Google Scholar 

  • Khodyuchenko, T.A. and Krasikova, A.V., Cajal bodies and histone locus bodies: molecular structure and function, Ontogenez, 2014, vol. 45, no. 6 pp. 363–5.

    Google Scholar 

  • Kon, T., Mori, F., Tanji, K., Miki, Y., Toyoshima, Y., Yoshida, M., Sasaki, H., Kakita, A., Takahashi, H., and Wakabayashi, K., ALS-associated protein FIG4 is localized in Pick and Lewy bodies, and also neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases, Neuropathology, 2014, vol. 34, pp. 19–4.

    Article  PubMed  CAS  Google Scholar 

  • Korzhevskii, D.E., Silver nitrate impregnation of internuclear structures in nerve cells following fixation in Carnoy’s medium, Morfologiia, 2001, vol. 119, no. 2 pp. 67–5.

    PubMed  CAS  Google Scholar 

  • Korzhevskii, D.E. and Otellin, V.A., The use of a nucleolus silver-staining method in assessing the function of the protein-synthesizing apparatus of nerve cells, Tsitologiia, 1993, vol. 35, no. 10 pp. 20–5.

    PubMed  CAS  Google Scholar 

  • Korzhevskii, D.E., Sukhorukova, E.G., Gilerovich, E.G., Petrova, E.S., Kirik, O.V., and Grigor’ev, I.P., Advantages and disadvantages of zinc-ethanol-formaldehyde as a fixative for immunocytochemical studies and confocal laser microscopy, Neurosci. Behav. Physiol., 2014, vol. 44, no. 5 pp. 542–5.

    Article  CAS  Google Scholar 

  • Krygowska-Wajs, A., Lenda, T., Adamek, D., Moskaa, M., Kuter, K., Kunz, J., Smiaowska, M., and Ossowska, K., Increased synphilin-1 expression in human elderly brains with substantia nigra Marinesco bodies, Pharmacol. Rep., 2008, vol. 60, pp. 914–4.

    PubMed  CAS  Google Scholar 

  • Lafarga, M., Hervás, J.P., Santa-Cruz, M.C., Villegas, J., and Crespo, D., The “accessory body” of Cajal in the neuronal nucleus. A light and electron microscopic approach, Anat. Embryol. (Berlin), 1983, vol. 166, pp. 19–4.

    Article  CAS  Google Scholar 

  • Leestma, J.E. and Andrews, J.M., The fine structure of the Marinesco body, Arch. Pathol., 1969, vol. 88, pp. 431–4.

    PubMed  CAS  Google Scholar 

  • Mamaev, N.N. and Mamaeva, S.E., The structure and function of the chromosomal nucleolus organizer regions: the molecular, cytological and clinical aspects, Tsitologiia, 1992, vol. 34, no. 10 pp. 3–5.

    PubMed  CAS  Google Scholar 

  • Marinesco, G., Sur la presence des corpuscles acidophiles paranucleolaires dans les cellules du locus niger et du locus ceruleus, C. R. Acad. Sci., 1902, vol. 135, pp. 1000–4.

    Google Scholar 

  • Matera, A.G., Nuclear bodies: multifaceted subdomains of the interchromatin space, Trends Cell Biol., 1999, vol. 9, pp. 302–4.

    Article  PubMed  CAS  Google Scholar 

  • Misteli, T., Protein dynamics: implications for nuclear architecture and gene expression, Science, 2001, vol. 291, pp. 843–4.

    Article  PubMed  CAS  Google Scholar 

  • Mori, F., Tanji, K., Odagiri, S., Toyoshima, Y., Yoshida, M., Kakita, A., Takahashi, H., and Wakabayashi, K., Autophagy-related çroteins (p62, NBR1 and LC3) in intranuclear inclusions in neurodegenerative diseases, Neurosci. Lett., 2012, vol. 522, pp. 134–4.

    Article  PubMed  CAS  Google Scholar 

  • Morris, G.E., The Cajal body, Biochim. Biophys. Acta., 2008, vol. 1783, pp. 2108–4.

    Article  PubMed  CAS  Google Scholar 

  • Odagiri, S., Tanji, K., Mori, F., Kakita, A., Takahashi, H., Kamitani, T., and Wakabayashi, K., Immunohistochemical analysis of Marinesco bodies, using antibodies against proteins implicated in the ubiquitin–proteasome system, autophagy and aggresome formation, Neuropathology, 2012, vol. 32, pp. 261–4.

    Article  PubMed  Google Scholar 

  • Okamoto, K. and Hirai, S., Fine structures of Marinesco body and nuclear body in the substantia nigra, Rinsho Shinkeigaku [Clin. Neurol.]., 1981, vol. 21, pp. 781–4.

    PubMed  CAS  Google Scholar 

  • Oksova, E.E., Nucleolar vacuolization of human cerebral cortex neurons, Arkh. Anat. Gistol. Embriol., 1972, vol. 63, no. 10 pp. 33–5.

    PubMed  CAS  Google Scholar 

  • Otellin, V.A., Neokesariiskii, A.A., and Korzhevskii, D.E., Changes in the structure of the nucleus of neocortical neurons during deficiency of serotonin and catecholamines, Tsitologiia, 1998, vol. 40, no. 4 pp. 256–5.

    PubMed  CAS  Google Scholar 

  • Ramony Cajal, S., Un sencillo metodo de coloracion selective del reticulo protoplasmico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados, Trab. Lab. Invest. Biol., 1903, vol. 2, pp. 129–4.

    Google Scholar 

  • Schaefer, J.T., Nuovo, G.J., Yen, T.S., and Werner, B., Prominent eosinophilic intranuclear inclusions in melanocytes of a melanocytic nevus: the aftermath of an infection with molluscum contagiosum? A case report, J. Cutan. Pathol., 2008, vol. 35, pp. 782–4.

    Article  PubMed  Google Scholar 

  • Shishido-Hara, Y., Yazawa, T., Nagane, M., Higuchi, K., Abe-Suzuki, S., Kurata, M., Kitagawa, M., Kamma, H., and Uchihara, T., JC virus inclusions in progressive multifocal leukoencephalopathy: scaffolding promyelocytic leukemia nuclear bodies grow with cell cycle transition through an S-to-G2-like state in enlarging oligodendrocyte nuclei, J. Neuropathol. Exp. Neurol., 2014, vol. 73, pp. 442–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shults, C.W., Lewy bodies, Proc. Natl. Acad. Sci. USA, 2006, vol. U S A 103, pp. 1661–1668.

    Article  CAS  Google Scholar 

  • Sirri, V., Urcuqui-Inchima, S., Roussel, P., and Hernandez-Verdun, D., Nucleolus: the fascinating nuclear body, Histochem. Cell Biol., 2008, vol. 129, pp. 13–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stupina, A.S., Kvitnitskaya-Ryzhova, T.Yu., Mezhiborskaya, N.A., Shaposhnikov, V.M., and Berezhkov, N.V., Arkh. Anat. Gistol. Embriol., 1987, vol. 92, no. 2 pp. 24–5.

    PubMed  CAS  Google Scholar 

  • Sugaya, K., Ishihara, Y., and Inoue, S., Analysis of a temperature-sensitive mutation in Uba1: effects of the click reaction on subsequent immunolabeling of proteins involved in DNA replication, FEBS Open Bio, 2015, vol. 5, pp. 167–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sukhorukova, E.G., Alekseeva, O.S., and Korzhevskii, D.E., Catecholaminergic neurons of mammalian brain and neuromelanin, J. Evol. Biochem. Physiol., 2014, vol. 50, no. 5 pp. 383–5.

    Article  CAS  Google Scholar 

  • Tsvetkov, A.G., Kvasov, I.D., Khaitlina, S.Yu., and Parfenov, V.N., The coiled bodies and satellite microbodies of the oocyte nuclei in hibernating Rana temporaria frogs contain actin, Tsitologiia, 1997, vol. 39, no. 1 pp. 10–5.

    PubMed  CAS  Google Scholar 

  • Wakabayashi, K., Tanji, K., Odagiri, S., Miki, Y., Mori, F., and Takahashi, H., The Lewy body in Parkinson’s disease and related neurodegenerative disorders, Mol. Neurobiol., 2013, vol. 47, pp. 495–4.

    Article  PubMed  CAS  Google Scholar 

  • Woulfe, J., Gray, D., Pritchet-Pejic, W., Munoz, D.G., and Chretien, M., Intranuclear rodlets in the substantia nigra: interactions with Marinesco bodies, ubiquitin and promyelocytic leukemia protein, J. Neuropathol. Exp. Neurol., 2004, vol. 63, pp. 1200–4.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa, N., Toyokura, Y., and Shiraki, H., Double encephalitis with herpes simplex virus and cytomegalovirus in an adult, Acta Neuropathol., 1975, vol. 33, pp. 153–4.

    Article  PubMed  CAS  Google Scholar 

  • Yuen, P. and Baxter, D.W., The morphology of Marinesco bodies (paranucleolar corpuscles) in the melanin-pigmented nuclei of the brainstem, J. Neurol. Neurosurg. Psychiatr., 1963, vol. 26, pp. 178–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zatsepina, O.V., Three-dimensional organization and transcription of ribosomal genes in nucleolus, Tsitologiia, 1997, vol. 39, no. 1 pp. 60–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Grigor’ev.

Additional information

Original Russian Text © I.P. Grigor’ev, D.E. Korzhevskii, E.G. Sukhorukova, V.V. Gusel’nikova, O.V. Kirik, 2015, published in Tsitologiya, 2015, Vol. 57, No. 11, pp. 780–787.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, I.P., Korzhevskii, D.E., Sukhorukova, E.G. et al. Intranuclear ubiquitin-immunopositive structures in human substantia nigra neurons. Cell Tiss. Biol. 10, 29–36 (2016). https://doi.org/10.1134/S1990519X16010053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X16010053

Keywords

Navigation