Skip to main content
Log in

Brain-derived neurotrofic factor (BDNF) secretion of human mesenchymal stem cells isolated from bone marrow, endometrium and adipose tissue

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The ability of mesenchymal stem cells (MSCs) to differentiate into neuronal lineage determines the potential of these cells as a substrate for a cell replacement therapy. In this paper we compare the neurogenic potential of the MSCs from different donors, isolated from the bone marrow (BMSC), subcutaneous adipose tissue (AD MSC) and menstrual blood (eMSC). It was established that the native eMCSs, BMSCs and AD MSCs express neuronal marker β-III-tubulin with a frequency of 90, 50 and 14%, respectively. Also we showed that the eMSCs have a high endogenous level of brain-derived neurotrophic factor (BDNF), whereas the BMSCs and the AD MSCs are characterized by low basal BDNF levels. An induction of neuronal differentiation in the studied MSCs using differentiation medium containing B27 and N2 supplements, 5-azacytidine, retinoic acid, IBMX and dbcAMP induced changes in the cells morphology, the increase of β-III-tubulin expression, and the appearance of neuronal markers GFAP, NF-H, NeuN and MAP2. During the differentiation the BDNF secretion was significantly enhanced in the BMSCs and decreased in the eMSCs cultures. However, no correlation between the basal and induced levels of the neuronal markers expression in the studied MSCs has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BM:

bone marrow

AD:

adipose tissue

MSCs:

mesenchymal stem cells

eMSC:

endometrial MSCs

BMSCs:

bone marrow MSCs

AD MSCs:

MSCs from adipose tissue

GFAP:

glial fibrillary acidic protein

NF-H:

neuronal filaments

NeuN:

neuronal nuclei

MAP2:

protein associated with microtubules

IBMX:

isobutylmethylxanthine

dbcAMP:

dibutyryl-cyclic AMP

References

  • Acheson, A., Conover, J.C., Fandl, J.P., DeChiara, T.M., Russell, M., Thadani, A., Squinto, S.P., Yancopoulos, G.D., and Lindsay, R.M., A BDNF autocrine loop in adult sensory neurons prevents cell death, Nature, 1995, vol. 374, pp. 450–453.

    Article  CAS  PubMed  Google Scholar 

  • Anghileri, E., Marconi, S., Pignatelli, A., Cifelli, P., Galie, M., and Sbarbati, A., Neuronal differentiation potential of human adiposederived mesenchymal stem cells, Stem Cells Dev., 2008, vol. 17, no. 5, pp. 909–916.

    Article  CAS  PubMed  Google Scholar 

  • Blandini, F., Cova, L., Armentero, M.T., Zennaro, E., Levandis, G., Bossolasco, P., Calzarossa, C., Mellone, M., Giuseppe, B., Deliliers, G.L., Polli, E., Nappi, G., and Silani, V., Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat, Cell Transplant., 2010, vol. 19, pp. 203–217.

    Article  PubMed  Google Scholar 

  • Blondheim, N., Levy, Y., Ben-Zur, T., Burshtein, A., Cherlow, T., Kan, I., Barsilai, R., Bahat-Stromza, M., Barhum, Y., Bulvik, S., Melamed, E., and Offen, D., Human mesenchymal stem cells express neural genes, suggesting a neural predisposition, Stem Cells Dev., 2006, vol. 15, pp. 141–164.

    Article  CAS  PubMed  Google Scholar 

  • Borlongan, C.V., Kaneko, Y., Maki, M., Yu, S.J., Ali, M., Allickson, J.G., Sanberg, C.D., Kuzmin-Nichols, N., and Sanberg, P.R., Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke, Stem Cells Dev., 2010, vol. 19, pp. 439–452.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brohlin, M., Kingham, P., Novikova, L., Novikov, L., and Wiberg, M., Aging effect on neurotrophic activity of human mesenchymal stem cells, PLoS One, 2012, vol. 7, p. e45052.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caplan, A.I., Mesenchymal stem cells, J. Orthop. Res., 1991, vol. 9, pp. 641–650.

    Article  CAS  PubMed  Google Scholar 

  • Cho, N.H., Park, Y.K., Kim, Y.T., Yang, H., and Kim, S.K., Lifetime expression of stem cell markers in the uterine endometrium, Fertil. Steril., 2004, vol. 81, pp. 403–407.

    Article  CAS  PubMed  Google Scholar 

  • Deng, J., Petersen, B.E., Steindler, D.A., Jorgensen, M.L., and Laywell, E.D., Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation, Stem Cells, 2006, vol. 24, pp. 1054–1064.

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein, A.J., Petrakova, K.V., Kurolesova, A.I., and Frolova, G.P., Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues, Transplantation, 1968, vol. 6, pp. 230–247.

    Article  CAS  PubMed  Google Scholar 

  • Gargett, C.E., Identification and characterization of human endometrial stem/progenitor cells, Aust. NZ J. Obstet. Gynaecol., 2006, vol. 46, pp. 250–253.

    Article  Google Scholar 

  • Glavaski-Joksimovic, A., Virag, T., Mangatu, T.A., McGrogan, M., Wang, X.S., and Bohn, M.C., Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson’s disease, J. Neurosci. Res., 2010, vol. 88, no. 12, pp. 2669–2681.

    CAS  PubMed  Google Scholar 

  • Gronthos, S., Franklin, D.M., Leddy, H.A., Robey, P.G., Storms, R.W., and Gimble, J.M., Surface protein characterization of human adipose tissue-derived stromal cells, J. Cell. Physiol., 2001, vol. 189, pp. 54–63.

    Article  CAS  PubMed  Google Scholar 

  • Hass, R., Kasper, C., Bohm, S., and Jacobs, R., Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC, Cell Commun. Signal., 2011, vol. 9, pp. 12–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hermann, A., Liebau, S., Gastl, R., Fickert, S., Habisch, H., Fiedler, J., Schwarz, J., Brenner, R., and Storch, A., Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols, J. Neurosci. Res., 2006, vol. 83, pp. 1502–1514.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S.K., Lee, D.H., Bae, Y.C., Kim, H.K., Baik, S.Y., and Jung, J.S., Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats, Exp. Neurol., 2003, vol. 183, pp. 355–366.

    Article  CAS  PubMed  Google Scholar 

  • Kearns, C.M. and Gash, D.M., GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo, Brain Res., 1995, vol. 672, pp. 104–111.

    CAS  PubMed  Google Scholar 

  • Kim, B., Seo, J.H., Bubien, J.K., and Oh, Y.S., Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro, Neuroreport, 2002, vol. 13, pp. 1185–1188.

    Article  PubMed  Google Scholar 

  • Kim, H.J., Lee, J.H., and Ki, S.H., Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis, J. Neurotrauma, 2010, vol. 27, pp. 131–138.

    Article  PubMed  Google Scholar 

  • Kurozumi, K., Nakamura, K., Tamiya, T., Kawano, Y., Ishii, K., Kobune, M., Hirai, S., Uchida, H., Sasaki, K., Ito, Y., Kato, K., Honmou, O., Houkin, K., Date, I., and Hamada, H., Mesenchymal stem cells that produce neurotrophicfactors reduce ischemic damage in the rat middle cerebral artery occlusion model, Mol. Ther., 2005, vol. 11, pp. 96–104.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Chen, J., Chen, X.G., Wang, L., Gautam, S.C., Xu, Y.X., Katakowski, M., Zhang, L.J., Lu, M., Janakiraman, N., and Chopp, M., Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery, Neurology, 2002, vol. 59, pp. 514–523.

    Article  CAS  PubMed  Google Scholar 

  • Lopatina, T.V., Kalinina, N.I., Revishchin, A.V., Beme, A.A., Spirova, I.A., Pavlova, G.V., and Parfenova, E.V., Induction of neural differentiation of adipose tissue stromal cells, Klet. Transplantol. Tkan. Inzhener., 2008, vol. 3, no. 4, pp. 50–55.

    Google Scholar 

  • Lopatina, T., Kalinina, N., Karagyaur, M., Stambolsky, D., Rubina, K., Revischin, A., Pavlova, G., Parfyonova, Y., and Tcachuk, V., Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo, PLoS One, 2011, vol. 6, p. e17899.

    Article  Google Scholar 

  • McCoy, M.K., Martinez, T.N., Ruhn, K.A., Wrage, P.C., Keefer, E.W., Botterman, B.R., Tansey, K.E., and Tansey, M.G., Autologous transplants of adipose-derived adult stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson’s disease, Exp. Neurol., 2008, vol. 210, pp. 14–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meirelles, L.S., Fontes, A.M., Covas, D.T., and Caplan, A.I., Mechanisms involved in the therapeutic properties of mesenchymal stem cells, Cytokine Growth Factor Rev., 2009, vol. 20, pp. 419–427.

    Article  CAS  Google Scholar 

  • Meng, X., Ichim, T.E., Zhong, J., Rogers, A., Yin, Z., Jackson, J., Wang, H., Ge, W., Bogin, V., Chan, K.W., Thébaud, B., and Riordan, N.H., Endometrial regenerative cells: a novel stem cell population, J. Transl. Med., 2007, vol. 5, pp. 57–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Molero, A.E., Gokhan, S., Gonzalez, S., Feig, J.L., Alexandre, L.C., and Mehler, M.F., Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington’s disease, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 21900–21905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moloney, T.C., Rooney, G.E., Barry, F.P., Howard, L., and Dowd, E., Potential of rat bone marrow-derived mesenchymal stem cells as vehicles for delivery of neurotrophins to the parkinsonian rat brain, Brain Res., 2010, vol. 1359, pp. 33–43.

    CAS  PubMed  Google Scholar 

  • Musina, R.A., Belyavski, A.V., Tarusova, O.V., Solovyova, E.V., and Sukhikh, G.T., Endometrial mesenchymal stem cells isolated from the menstrual blood, Bull. Exp. Biol. Med., 2008, vol. 145, no. 4, pp. 539–543.

    CAS  PubMed  Google Scholar 

  • Noureddini, M., Verdi, J., Mortazavi-Tabatabaei, S.A., Sharif, S., Azimi, A., Keyhanvar, P., and Shoae-Hassani, A., Human endometrial stem cell neurogenesis in response to NGF and BFGF, Cell Biol. Int., 2012, vol. 36, pp. 961–966.

    Article  CAS  PubMed  Google Scholar 

  • Olson, S.D., Pollock, K., Kambal, A., Cary, W., Mitchell, G., Tempkin, J., Stewart, H., McGee, J., Bauer, G., Kim, H.S., Tempkin, T., Wheelock, V., Annett, G., Dunbar, G., and Nolta, J.A., Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington disease, Mol. Neurobiol., 2012, vol. 45, pp. 87–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park, H.J., Shin, J.Y., Lee, B.R., Kim, H.O., and Lee, P.H., Mesenchymal stem cells augment neurogenesis in the sub-ventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a parkinsonian model, Cell Transplant., 2012, vol. 21, pp. 1629–1640.

    Article  PubMed  Google Scholar 

  • Patel, A.N., Park, E., Kuzman, M., Benetti, F., Silva, F.J., and Allickson, J.G., Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation, Cell Transplant., 2008, vol. 17, pp. 303–311.

    Article  PubMed  Google Scholar 

  • Paul, G. and Anisimov, S.V., The secretome of mesenchymal stem cells: potential implications for?neuroregeneration, Biochimie, 2013, vol. 95, pp. 2246–2256.

    Article  CAS  PubMed  Google Scholar 

  • Pavon-Fuentes, N., Blanco-Lezcano, L., Martinez-Martin, L., Castillo-Diaz, L., de la Cuetara-Bernal, K., Garcia-Miniet, R., Lorigados-Pedre, L., Coro-Grave de Peralta, Y., Garcia-Varona, A.Y., Rosillo-Marti, J.C., and Macias-Gonzalez, R., Stromal cell transplant in the 6-OHDA lesion model, Rev. Neurol., 2004, vol. 39, pp. 326–334.

    CAS  PubMed  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R., Multilineage potential of adult human mesenchymal stem cells, Science, 1999, vol. 284, pp. 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Planat-Benard, V., Silvestre, J.S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., Clergue, M., Manneville, C., Saillan-Barreau, C., Duriez, M., Tedgui, A., Levy, B., Penicaud, L., and Casteilla, L., Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives, Circulation, 2004, vol. 109, pp. 656–663.

    Article  PubMed  Google Scholar 

  • Rangappa, S., Fen, C., Lee, E.H., Bongso, A., and Wei, E.S., Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes, Ann. Thorac. Surg., 2003, vol. 75, pp. 775–779.

    Article  PubMed  Google Scholar 

  • Sadan, O., Eldad, Melamed, E., and Offen, D., Intrastriatal transplantation of neurotrophic factor-secreting human mesenchymal stem cells improves motor function and extends survival in R6/2 transgenic mouse model for Huntington’s disease, PLoS One, 2012, vol. 4, p. e4f7f6dc013d4e.

    Google Scholar 

  • Safford, K.M., Hicok, K.C., Safford, S.D., Halvorsen, Y.D., Wilkison, W.O., Gimble, J.M., and Rice, H.E., Neurogenic differentiation of murine and human adipose-derived stromal cells, Biochem. Biophys. Res. Commun., 2002, vol. 294, pp. 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, M., Radtke, C., Tan, A.M., Zhao, P., Hamada, H., Houkin, K., Honmou, O., and Kocsis, J.D., BDNF-hyper-secreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury, J. Neurosci., 2009, vol. 29, pp. 14932–14941.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer, H., Fischer, W., Nikkhah, G., Wiegand, S.J., Brundin, P., Lindsay, R.M., and Bjorklund, A., Brain-derived neurotrophic factor enhances function rather than survival of intrastriatal dopamine cell-rich grafts, Brain Res., 1993, vol. 626, pp. 37–44.

    CAS  PubMed  Google Scholar 

  • Scuteri, A., Miloso, M., Foudah, D., Orciani, M., Cavaletti, G., and Tredici, G., Mesenchymal stem cells neuronal differentiation ability: a real perspective for nervous system repair?, Curr. Stem Cell Res. Ther., 2011, vol. 6, pp. 82–92.

    Article  CAS  PubMed  Google Scholar 

  • Si, Y.L., Zhao, Y.L., Hao, H.J., Fu, X.B., and Han, W.D., MSCs: biological characteristics, clinical applications and their outstanding concerns, Ageing Res. Rev., 2011, vol. 10, pp. 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Tondreau, T., Lagneaux, L., Dejeneffe, M., Massy, M., Mortier, C., Delforge, A., and Bron, D., Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation, Differentiation, 2004, vol. 72, pp. 319–326.

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi, K., Nagai, A., Sheikh, A.M., Shiota, Y., Narantuya, D., Watanabe, T., Masuda, J., Kobayashi, S., Kim, S.U., and Yamaguchi, S., Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model, J. Neurosci. Res., 2010, vol. 88, pp. 1017–1025.

    CAS  PubMed  Google Scholar 

  • Wolff, E.F., Gao, X.B., Yao, K.V., Andrews, Z.B., Du, H., Elsworth, J.D., and Taylor, H.S., Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model, J. Cell. Mol. Med., 2011, vol. 15, pp. 747–755.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woodbury, D., Schwarz, E.J., Prockop, D.J., and Black, I.B., Adult rat and human bone marrow stromal cells differentiate into neurons, J. Neurosci. Res., 2000, vol. 61, pp. 364–370.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Yu, W., Chen, Y., Su, Y., Ding, Z., Ren, H., Jiang, Y., and Wang, J., Intrastriatal transplantation of GDNF-engineered BMSCs and its neuroprotection in lactacystin-induced Parkinsonian rat model, Neurochem. Res., 2010, vol. 35, pp. 495–502.

    Article  CAS  PubMed  Google Scholar 

  • Ye, M., Wang, X.J., Zhang, Y.H., Lu, G.Q., Liang, L., Xu, J.Y., and Sheng-Di, C., Therapeutic effects of differentiated bone marrow stromal cell transplantation on rat models of Parkinson’s disease, Parkinsonism Relat. Disord., 2007, vol. 13, pp. 44–49.

    Article  PubMed  Google Scholar 

  • Zemelko, V.I., Grinchuk, T.M., Domnina, A.P., Artzibasheva, I.V., Zenin, V.V., Kirsanov, A.A., Bichevaia, N.K., Korsak, V.S., and Nikolskiy, N.N., Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells, Cell Tissue Biol., 2012, vol. 6, no. 1, pp. 1–11.

    Article  Google Scholar 

  • Zemelko, V.I., Kozhucharova, I.B., Alekseenko, L.L., Domnina, A.P., Reshetnikova, G.F., Puzanov, M.V., Dmitrieva, R.I., Grinchuk, T.M., Nikolskiy, N.N., and Anisimov, S.V., Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a comparative study, Cell Tissue Biol., 2013, vol. 7, no. 3, pp. 235–244.

    Article  Google Scholar 

  • Zhang, R., Liu, Y., Yan, K., Chen, L., Chen, X.R., Li, P., Chen, F.F., and Jiang, X.D., Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury, J. Neuroinflamm., 2013, vol. 10, pp. 106–118.

    Article  CAS  Google Scholar 

  • Zigova, T., Pencea, V., Wiegand, S.J., and Luskin, M.B., Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb, Mol. Cell. Neurosci., 1998, vol. 11, pp. 234–245.

    Article  CAS  PubMed  Google Scholar 

  • Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.A., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H., Human adipose tissue is a source of multipotent stem cells, Mol. Biol. Cell., 2002, vol. 13, pp. 4279–4295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zemelko.

Additional information

Original Russian Text © V.I. Zemelko, I.V. Kozhucharova, Z.V. Kovaleva, A.P. Domnina, N.A. Pugovkina, I.I. Fridlyanskaya, M.V. Puzanov, S.V. Anisimov, T.M. Grinchuk, N.N. Nikolsky, 2014, published in Tsitologiya, 2014, Vol. 56, No. 3, pp. 204–211.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemelko, V.I., Kozhucharova, I.V., Kovaleva, Z.V. et al. Brain-derived neurotrofic factor (BDNF) secretion of human mesenchymal stem cells isolated from bone marrow, endometrium and adipose tissue. Cell Tiss. Biol. 8, 283–291 (2014). https://doi.org/10.1134/S1990519X14040129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X14040129

Keywords

Navigation