Skip to main content
Log in

Shear Hele-Shaw flows of a weakly compressible liquid

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We derive an integro-differential system of equations to describe the shear flows of a weakly compressible multicomponent liquid in a Hele-Shaw cell. The velocities of propagation of nonlinear disturbances in the liquid are determined, and the characteristic form of the system is calculated. The conditions for hyperbolicity of the model are formulated that are necessary for the correct statement of the Cauchy problem. The multilayered one-dimensional motion of the liquid are considered and, within the framework of the two-layered scheme of the flow, interpretation is given of the Saffman-Taylor instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Saffman and G. Taylor, “The Penetration of a Fluid into a Porous Medium or a Hele-Shaw Cell Containing a More Viscous Liquid,” Proc. Roy. Soc. London A245, 312–329 (1958).

    Article  MathSciNet  Google Scholar 

  2. G. M. Homsy, “Viscous Fingering in Porous Media,” Annuaire Rev. Fluid Mech. 19, 271–311 (1987).

    Article  Google Scholar 

  3. J. Azaiez and B. Singh, “Stability of Miscible Displacements of Shear Thinning Fluids in a Hele-Shaw Cell,” Phys. Fluids. 14, 1559–1571 (2002).

    Article  MathSciNet  Google Scholar 

  4. P. Gondret and M. Rabaud, “Shear Instability of Two-Fluid Parallel Flow in a Hele-Shaw Cell,” Phys. Fluids. 9, 3267–3274 (1997).

    Article  MathSciNet  Google Scholar 

  5. C. Chevalier, M. Amar, D. Bonn, and A. Linder, “Inertial Effects on Saffman-Taylor Viscous Fingering,” J. Fluid Mech. 552, 83–97 (2006).

    Article  MATH  Google Scholar 

  6. A. V. Zvyagin, O. E. Ivashnev, and O. A. Logvinov, “Effect of Small Parameters on the Structure of the Front Formed by Unstable Viscous-Fluid Displacement from a Hele-Shaw Cell,” Izv. Ross. Akad. Nauk. Mekh. Zhidk. Gaza No. 4, 27–37 (2007) [Fluid Dynamics 42 (4), 518–527 (2007)].

    Google Scholar 

  7. V. M. Teshukov, “On Hyperbolicity of the Equations of Long Waves,” Dokl. Akad. Nauk SSSR 284(3), 555–559 (1985).

    MathSciNet  Google Scholar 

  8. V. Yu. Lyapidevskii and V. M. Teshukov, Mathematical Models of Propagation of Long Waves in an Inhomogeneous Liquid (Sibirsk. Otdel. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  9. J. Adachi, E. Siebrits, A. Peirce, and J. Desroches, “Computer Simulation of Hydraulic Fractures,” Internat. J. Rock Mech. Min. Sci. 44, 739–757 (2007).

    Article  Google Scholar 

  10. A. A. Chesnokov and V. Yu. Lyapidevskii, “Wave Motion of an Ideal Fluid in a Narrow Open Channel,” Prikl. Mekh. Tekhn. Fiz. 50(2), 61–71 (2009) [J. Appl. Mech. Tech. Phys. 50 (2), 220–228 (2009)].

    MathSciNet  Google Scholar 

  11. V. E. Zakharov, “Benny Equations and a Quasi-Classical Approximation in the Inverse Scattering Method,” Funktsional. Anal. i Prilozhen. 14(2), 15–24 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. A. Chesnokov and V. Yu. Liapidevskii, “Shallow Water Equations for Shear Flows,” Notes Numer. Fluid Mech. Multidisciplinary Design 115, 165–179 (2011).

    Article  MathSciNet  Google Scholar 

  13. V. M. Teshukov and M. M. Sterkhova, “Characteristic Properties of the System of Equations of a Shear Flow with Nonmonotonic Velocity Profile,” Prikl. Mekh. Tekhn. Fiz. 36(3), 53–59 (1995) [J. Appl. Mech. Tech. Phys. 36 (3), 367–372 (1995)].

    MATH  MathSciNet  Google Scholar 

  14. E. Yu. Knyazeva and A. A. Chesnokov, “Stability Criterion for Shear Fluid Flow and Hyperbolicity of the Long-Waves Equations,” Prikl. Mekh. Tekhn. Fiz. 53(5), 30–37 (2012) [J. Appl. Mech. Tech. Phys. 53 (5), 657–663 (2012)].

    MathSciNet  Google Scholar 

  15. A. A. Chesnokov and A. K. Khe, “Is Landau Damping Possible in a Shear Fluid Flow?” Stud. Appl. Math. 131(4), 343–358 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Nessyahu and E. Tadmor, “Non-Oscillatory Central Differencing Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 87, 408–463 (1990).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chesnokov.

Additional information

Original Russian Text © Yu.A. Medova, A.A. Chesnokov, 2014, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2014, Vol. XVII, No. 4, pp. 67–78.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medova, Y.A., Chesnokov, A.A. Shear Hele-Shaw flows of a weakly compressible liquid. J. Appl. Ind. Math. 9, 88–97 (2015). https://doi.org/10.1134/S199047891501010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047891501010X

Keywords

Navigation