Skip to main content
Log in

Inhomogeneous Nusselt–Couette–Poiseuille Flow

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new type of steady flow of a liquid thin film flowing down an inclined plane is studied. Two-dimensional inhomogeneous flows of the Nusselt type are considered. Depending on the boundary conditions at the free interface, which is assumed to be a nondeformable interface, inhomogeneous fluid flows generalize the exact solutions of Nusselt, Couette, and Poiseuille. The generalizations and modifications of classical flows considered in the article are described by an overdetermined system that is comprised of the Navier–Stokes equations and the continuity equation. A nontrivial exact solution of the overdetermined system is shown, which characterizes the inhomogeneous motion of a vertical swirling fluid. Velocities and shear stresses described by polynomials are analyzed. The study of hydrodynamic fields shows that they have a complex stratification. The fluid flow moving on an inclined plane may contain four regions with counterflows. Shear stresses across the layer thickness have different signs and can change sign twice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Polyanin, A.D., Kutepov, A.M., Vyazmin, A.V., and Kazenin, D.A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, London: Taylor & Francis, 2002.

    Google Scholar 

  2. Starodubtseva, I.P., Pavlenko, A.N., Volodin, O.A., and Surtaev, A.S., The features of rewetting dynamics of the overheated surface by a falling film of cryogenic liquid, Thermophys. Aeromech., 2012, vol. 19, no. 2, p. 307.

    Article  Google Scholar 

  3. Andreev, V.K., On Nusselt’s solution and its generalizations, AIP Conf. Proc., 2021, vol. 2448, Article 020001.

    Article  Google Scholar 

  4. Drazin, P.G., Introduction to Hydrodynamic Stability, Cambridge: Cambridge University Press, 2002.

    Book  Google Scholar 

  5. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 1960.

    Google Scholar 

  6. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, N.J.: Prentice-Hall, 1962.

    Google Scholar 

  7. Aristov, S.N., Knyazev, D.E., and Polyanin, A.D., Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, p. 642.

    Article  CAS  Google Scholar 

  8. Ershkov, S.V., Prosviryakov, E.Y., Burmasheva, N.V., and Christianto, V., Towards understanding the algorithms for solving the Navier–Stokes equations, Fluid Dyn. Res., 2021, vol. 53, no. 4, p. 044501.

    Article  Google Scholar 

  9. Ronshin, F.V., Chinnov, E.A., Dementyev, Yu.A., and Kabov, O.A., The bridge flow regime in microchannels, Dokl. Phys., 2021, vol. 66, no. 8, p. 229.

    Article  CAS  Google Scholar 

  10. Zheng, W., Chen, T., Sen, P., Bai, B., Gatapova, E.Y., and Kabov, O.A., Subcooled jet impingement boiling enhanced by porous surface with microcolumn array, J. Enhanced Heat Transfer, 2021, vol. T. 28, no. 5, p. 1.

  11. Karchevsky, A.L., Cheverda, V.V., Marchuk, I.V., Gigola, T.G., Sulyaeva, V.S., and Kabov, O.A., Heat flux density evaluation in the region of contact line of drop on a sapphire surface using infrared thermography measurements, Microgravity Sci. Technol., 2021, vol. 33, no. 4, Article 53.

    Article  CAS  Google Scholar 

  12. Lyulin, Yu.V., Kabov, O.A., Kuznetsov, G.V., Feoktistov, D.V., and Ponomarev, K.O., The effect of the interface length on the evaporation rate of a horizontal liquid layer under a gas flow, Thermophys. Aeromech., 2020, vol. 27, no. 1, p. 117.

    Article  Google Scholar 

  13. Kochkin, D.Y., Zaitsev, D.V., and Kabov, O.A., Thermocapillary rupture and contact line dynamics in the heated liquid layers, Interfacial Phenom. Heat Transfer, 2020, vol. 8, no. 1, p. 1.

    Article  Google Scholar 

  14. Kapitsa, P.L., Wave flow of thin layers of a viscous fluid: Free flow, Zh. Eksp. Tekh. Fiz., 1948, vol. 18, no. 1, p. 3.

    Google Scholar 

  15. Pukhnachev, V.V., On the theory of rolling waves, J. Appl. Mech. Tech. Phys., 1975, vol. 16, no. 5, p. 703.

    Article  Google Scholar 

  16. Benjamin, T., Wave formation in laminar flow down an inclined plane, J. Fluid Mech., 1957, vol. 2, no. 6, p. 554.

    Article  Google Scholar 

  17. Aristov, S.N. and Prosviryakov, E.Yu., Inhomogeneous Couette flows, Nelineinaya Din., 2014, vol. 10, no. 2, p. 177.

    Article  Google Scholar 

  18. Prosviryakov, E.Y. and Spevak, L.F., Layered three-dimensional nonuniform viscous incompressible flows, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, p. 765.

    Article  CAS  Google Scholar 

  19. Aristov, S.N. and Prosviryakov, E.Y., A new class of exact solutions for three-dimensional thermal diffusion equations, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, p. 286.

    Article  CAS  Google Scholar 

  20. Prosviryakov, E.Y., New class of exact solutions of Navier–Stokes equations with exponential dependence of velocity on two spatial coordinates, Theor. Found. Chem. Eng., 2019, vol. 53, no. 1, p. 107.

    Article  CAS  Google Scholar 

  21. Burmasheva, N.V. and Prosviryakov, E.Yu., Thermocapillary convection of a vertical swirling liquid, Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, p. 230.

    Article  CAS  Google Scholar 

  22. Burmasheva, N.V. and Prosviryakov, E.Yu., Convective layered flows of a vertically whirling viscous incompressible fluid: Velocity field investigation, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2019, vol. 23, no. 2, p. 341.

    Google Scholar 

  23. Lin, C.C., Note on a class of exact solutions in magneto-hydrodynamics, Arch. Ration. Mech. Anal., 1958, vol. 1, p. 391.

    Article  Google Scholar 

  24. Sidorov, A.F., Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory, J. Appl. Mech. Tech. Phys., 1989, vol. 30, no. 2, p. 197.

    Article  Google Scholar 

  25. Aristov, S.N., Vortex flows in thin liquid layers, Doctoral (Phys.–Math.) Dissertation, Vladivostok: Inst. Autom. Control Processes, 1990.

  26. Polyanin, A.D. and Aristov, S.N., A new method for constructing exact solutions to three-dimensional Navier–Stokes and Euler equations, Theor. Found. Chem. Eng., 2011, vol. 45, no. 6, p. 885.

    Article  CAS  Google Scholar 

  27. Aristov, S.N. and Polyanin, A.D., New classes of exact solutions and some transformations of the Navier–Stokes equations, Russ. J. Math. Phys., 2010, vol. 17, no. 1, p. 1.

    Article  Google Scholar 

  28. Aristov, S.N. and Polyanin, A.D., Exact solutions of unsteady three-dimensional Navier–Stokes equations, Dokl. Phys., 2009, vol. 54, no. 7, p. 316.

    Article  CAS  Google Scholar 

  29. Goruleva, L.S. and Prosviryakov, E.Yu., Inhomogeneous shear Couette–Poiseuille flow during the movement of the lower boundary of a horizontal layer, Khim. Fiz. Mezoskopiya, 2021, no. 4, p. 403.

  30. Burmasheva, N.V. and Prosviryakov, E.Yu., Investigation of the stratification of hydrodynamic fields for layered flows of a vertically swirling fluid, Diagn., Resour. Mech. Mater. Struct., no. 4, p. 62.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Burmasheva or E. Yu. Prosviryakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmasheva, N.V., Prosviryakov, E.Y. Inhomogeneous Nusselt–Couette–Poiseuille Flow. Theor Found Chem Eng 56, 662–668 (2022). https://doi.org/10.1134/S0040579522050207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522050207

Keywords:

Navigation