Skip to main content
Log in

Change in Water Composition in the Zone of Influence of Aluminum Production

  • Environmental Protection
  • Published:
Geography and Natural Resources Aims and scope Submit manuscript

Abstract

An analysis is made of the migration and accumulative ability of pollutants to identify their role in formation of the chemical composition of the water environment using, as an example, the Southern–Minusinsk Depression affected by atmospheric pollution from aluminum production. Information is obtained on the chemical composition of water in atmospheric precipitation, rivers, lakes and deep waters of the background territory which are used as a standard of comparison with the analogs from the zone of atmospheric pollution where the content levels of the main pollutants (F, Na+, Al3+, and Ni2+) were determined. The fluoride ion was identified as the priority pollutant element, with its weight and toxicity predominating. The area of lands polluted by this element is about 250 km2. It is established that the water component of the initial segment of the hydrosphere in the atmospheric precipitation → soil solutions → waters of the surface runoff → groundwater sequence underwent the largest effect. It is found that the composition of snow water changed from chloride–hydrocarbonate sodium–calcium to sulfate–fluoride sodium aluminum. The composition of rain water changed from chloride–hydrocarbonate calcium–sodium to hydrocarbonate–fluoride calcium–aluminum–sodium. Soil solutions contain in their composition a larger number of HCO3 and Ca2+ ions and are categorized as sulfate–hydrocarbonate calcic with the involvement of F, Na+ and Mg2+. It is determined that groundwater of the 1st level (as deep as 10 m) remains almost unchanged in its structure but in the vicinity of the plants they contain an increased amount of fluorine. Deep hydrocarbonate magnesium–calcium water used for drinking water supply is characterized by a persistently low fluorine content level. A very small quantity of this element remains in the Yenisei which is 5 km to the south from the emission source. The increased amount of fluorine and aluminum in lakes is caused mainly by natural factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kofman, V.Ya., Springs and Atmospheric Precipitation as the Source of Drinking Water, Sanepidkontol’. Okhrana Truda, 2014, no. 2. URL: https://doi.org/www.profiz.ru/sec/2_2014/rodniki_i_osadki (Accessed Feb. 7, 2017) [in Russian].

  2. Rose, S. and Shea, J.A., Environmental Geochemistry of Trace Metal Pollution in Urban Watersheds, in Concepts and Applications in Environmental Geochemistry, D. Sarkar, R. Datta and R. Hannigan, Eds., Vol. 5: Dev. Environ. Sci., 1st Ed., Amsterdam: Elsevier, 2007, pp. 99–131.

    Chapter  Google Scholar 

  3. Telmer, K., Bonham–Carter, G.F., Kliza, D.A., and Hall G.E.M., The Atmospheric Transport and Deposition of Smelter Emissions: Evidence From the Multi–Element Geochemistry of Snow, Quebec, Canada, Geochim. Cosmochim. Ac., 2004, vol. 68, issue 14, pp. 2961–2980.

    Article  Google Scholar 

  4. Davydova, N.D., Znamenskaya, T.I. and Lopatkin, D.A., Landscape–Geochemical Approach to Solving Problems of Environmental Pollution, Contemp. Probl. Ecol., 2014, vol. 7, issue 3, pp. 345–352.

    Article  Google Scholar 

  5. Belozertseva, I.A., Vorobyeva, I.B., Vlasova, N.V., Yanchuk, M.S., and Lopatina, D.N., Chemical Composition of Snow in the Water Area of Lake Baikal and on the Adjacent Territory, Geogr. Nat. Resour., 2017, vol. 38, issue 1, pp. 68–77.

    Article  Google Scholar 

  6. Davydova, N.D., Transformation of Geochemical Environment in the Technogenic Anomaly, Problemy Biogeokhimii and Geokhimicheskoi Ekologii, 2012, no. 3 (20), pp. 72–81 [in Russian].

    Google Scholar 

  7. RD 52.24.353–2012. Sampling of Waters from Land Surfaces and of Treated Waste Water. URL: https://doi.org/snipov.net/database/c_4294944184_doc_4293792809.html (Accessed Dec. 7, 2017) [in Russian].

  8. Davydova, N.D., Chemical Composition of Water Bodies of the Background of the Southern Minusinsk Depression, Uspekhi Sovremennogo Estestvoznaniya, 2017, no. 8, pp. 64–69 [in Russian].

    Google Scholar 

  9. Manual on Chemical Analysis of Surface Waters of Land, L.V. Boeva, Ed., Rostov–on–Don; Novocherkassk: NOK, 2009, Part 1 [in Russian].

  10. PNDF 14.1:2:4.135–2008. Technique for Carrying Out Measurements of Mass Concentration of Elements in Samples of Drinking, Natural and Waste Water and Atmospheric Precipitation Using Inductively Coupled Plasma Atomic Emission Spectrometry, Moscow: Goskom. RF po Okhrane Okruzhayushchei Sredy, 2008 [in Russian].

  11. RD 52.24.377–2008. Technique for Carrying Out Measuremnts of Mass Concentration of Metals (Al, Ag, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn) in Surface Waters of Land with Direct Electrochemical Atomization of Samples, Rostov–on–Don: Rosgidromet, 2008 [in Russian].

  12. PД 52.24.360–2008. Mass Concentration of Fluorides in Waters. Technique for Carrying Out Measurements by the Potentiometric Method With the Ion–Selective Electrode, Rostov–on–Don: Rosgidromet, 2008 [in Russian].

  13. Gubin, V.I. and Ostashkov, V.N., Statistical Methods of Processing Experimental Data. Manual for Students of Technical Higher Educational Institutions, Tyumen: Tyumen. Neftegaz. Univ., 2007 [in Russian].

    Google Scholar 

  14. Nikanorov, A.M., Hydrochemistry, Leningrad: Gidrometeoizdat, 1989 [in Russian].

    Google Scholar 

  15. Order of the Federal Agency for Fisheries of 1.18.2010 no. 20 “On Approval of Water Quality Standards for Water Bodies of Fisheries Significance, Including Standards of Maximum Allowable Concentrations of Harmful Substances in Waters of Water Bodies of Fisheries Significance”, Moscow, 2010. URL: https://doi.org/www.garant.ru/products/ipo/prime/doc/2070984 (Accessed Jan. 20, 2018) [in Russian].

  16. SanPiN 2.1.4.1074–01. Hygienic Requirements to the Water Quality in Centralized Drinking Water Supply Systems. Quality Control. Minzdrav of Russia. Moscow, 2002. URL: https://doi.org/docs.cntd.ru/document/901798042 (Accessed Dec. 7, 2017) [in Russian].

  17. Alekin, O.A., The Foundations of Hydrochemistry, Leningrad: Gidrometeoizdat, 1970 [in Russian].

    Google Scholar 

  18. Davydova, N.D., Landscape–Geochemical Barriers: A Classification, Geogr. Prir. Resur., 2005, no. 4, pp. 24–30 [in Russian].

    Google Scholar 

  19. Dutova, E.M., Pokrovskii, V.P. and Pokrovskii, V.D., Geochemical Characteristics of Groundwater for Domestic and Drinking Purposes in the Republic of Khakassia, Vestn. Tom. Univ., 2015, no. 394, pp. 239–249 [in Russian].

    Google Scholar 

  20. Ponomareva, Yu.A., Water Chemical Composition and Phytoplankton Structure in the Tail–Water of Krasnoyarsk Hydropower Station, Vestn. Krasnoyar. Agrar. Univ., 2013, no. 7, pp. 183–188 [in Russian].

    Google Scholar 

  21. Perel’man, A.I., Geochemistry, Moscow: Vyssh. Shk., 1989 [in Russian].

  22. Krainov, S.R. and Petrova, N.G., Fluorine–Bearing Groundwater, Its Geochemical Characteristics and Influence on Biogeochemical Processes, Geokhimiya, 1976, no. 10, pp. 15–33 [in Russian].

    Google Scholar 

  23. Arkhipov, A.L., Geoecological and Ecogeochemical Status of the Geological Environment of the Southern Minusinsk Depression (Republic of Khakassia), Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Tomsk: Tom. Univ., 2011 [in Russian].

    Google Scholar 

  24. Perel’man, A.I., Geochemistry of Elements in the Hypergenesis Zone, Moscow: Nedra, 1972 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Davydova.

Additional information

Original Russian Text © N.D. Davydova, 2018, published in Geografiya i Prirodnye Resursy, 2018, Vol. 39, No. 4, pp. 57–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydova, N.D. Change in Water Composition in the Zone of Influence of Aluminum Production. Geogr. Nat. Resour. 39, 316–323 (2018). https://doi.org/10.1134/S1875372818040042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1875372818040042

Keywords

Navigation