Skip to main content
Log in

Peptide regulation of specific ligand-receptor interactions of GABA with the plasma membranes of nerve cells

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Here we studied the role of peptide anxiolytics (Selank and its short fragment, Arg-Pro-Gly-Pro) in the occurrence of direct and indirect changes in the basic parameters of the specific ligand-receptor interactions of γ-aminobutyric acid (GABA) with the plasma membranes of nerve cells in the brain. We found that in the presence of the studied peptides the amount of the specifically bound ligand, [3H] GABA, varied. Preliminary intranasal administration of Selank also induced changes in the number of specific binding sites of [3H] GABA but did not affect the affinity of the receptors. More complex and delayed effects were caused by the preliminary intranasal administration of Arg-Pro-Gly-Pro (RPGP). The data that were obtained in the research also indicate the impact of the peptides on cellular regulatory mechanisms that are not associated with the ligand-receptor interaction of studied peptides in the places of their action. Thus, the biological effects of Selank were apparently due to a combination of the direct modulating action of the peptide on the target receptor and the initiation of the biochemical cellular mechanisms that determine the molecular basis of the physiological effect of the peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avedisova, A.S. and Yastrebov, D.V., Clin. Pharmacol. Psychiatry, 2004, vol. 6, no. 4, pp. 162–164.

    Google Scholar 

  2. Androsova, L.V., Kaleda, V.G., Barkhatova, A.N., Tsutsul’kovskaya, M.Ya., and Kolyaskina, G.I., Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2007, no. 9, pp. 50–54.

    Google Scholar 

  3. Gorobets, L.N., Soc. Clin. Psychiatry, 2005, vol. 15. no. 1, pp. 89–99

    Google Scholar 

  4. Hevers, W. and Luddens, H., Mol. Neurobiol., 1998, vol. 18, no. 1, pp. 35–86.

    Article  CAS  PubMed  Google Scholar 

  5. Wallace, R., Lancet Neurol., 2002, vol. 1, no. 4, p. 212.

    Article  PubMed  Google Scholar 

  6. Kriem, B., Cagniard, B., Bouquet, C., Rostain, J.C., and Abraini, J.H., NeuroReport, 1998, vol. 9, no. 7, pp. 1343–1347.

    Article  CAS  PubMed  Google Scholar 

  7. Rao, S.G., Williams, G.V., and Goldman-Rakic, P.S., J. Neurosci., 2000, vol. 20, no. 1, pp. 485–494.

    CAS  PubMed  Google Scholar 

  8. Luscher, B. and Keller, C.A., Pharmacol. Ther., 2004, vol. 102, no. 3, pp. 195–221.

    Article  CAS  PubMed  Google Scholar 

  9. Luscher, B., Fuchs, T., and Kilpatrick, C.L., Neuron, 2011, vol. 70, no. 3, pp. 385–409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Belelli, D., Harrison, N.L., Maguire, J., Macdonald, R.L., Walker, M.C., and Cope, D.W., Neuroscience, 2009, vol. 29, no. 41, pp. 12757–12763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Arancibia-Carcamo, I.L. and Kittler, J.T., Pharmacol. Ther., 2009, vol. 123, no. 1, pp. 17–31.

    Article  CAS  PubMed  Google Scholar 

  12. Korpi, E.R., Grunder, G., and Luddens, H., Prog. Neurobiol., 2002, vol. 67, no. 2, pp. 113–159.

    Article  CAS  PubMed  Google Scholar 

  13. Sinkkonen, S.T., Uusi-Oukari, M., Tupala, E., Sarkioja, T., Tiihonen, J., Panula, P., Luddens, H., and Korpi, E.R., Mol. Brain Res., vol. 86, nos. 1–2, pp. 168–178.

  14. Luddens, H. and Korpi, E.R., J. Neurosci., 1995, vol. 15, no. 10, pp. 6957–6962.

    CAS  PubMed  Google Scholar 

  15. Davies, M., Bateson, A.N., and Dunn, S.M., Front. Biosci., 1996, vol. 1, pp. 214–233.

    Google Scholar 

  16. Moskvichev, V.G., Filimonov, V.S., Dotkaeva, Z.B., and Vertkin, A.L., Lech.Vrach., 2008, no. 5, pp. 63–67.

    Google Scholar 

  17. Podsevatkin, V.G., Kiryukhina, S.V., Podsevatkina, S.V., and Kiryukhin, M.E., Psikhicheskoe Zdorov’e, 2010, no. 10, pp. 39–47.

    Google Scholar 

  18. Shabanov, P.D., Lebedev, A.A., Kornilov, V.A., Lavrov, N.V., Lyubimov, A.V., and Yaklashkin, A.V., Psychopharmacol. Biol. Narcol., 2009, vol. 9, nos. 1–2, pp. 2517–2523.

    CAS  Google Scholar 

  19. Osipchuk, D.O., Vest. Ural. Med. Acad. Nauki, 2009, vol. 4, no. 27, pp. 83–89.

    Google Scholar 

  20. Berkovich, A., McPhie, P., Campagnone, M., et al., Mol. Pharmacol., 1990, vol. 37, no. 2, pp. 164–172.

    CAS  PubMed  Google Scholar 

  21. Ulrich, M., Seeber, S., Becker, C.M., and Enz, R., Biochem. J., 2007, vol. 401, no. 2, pp. 429–436.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Chen, Z.W. and Olsen, R.W., J. Neurochem., 2007, vol. 100, no. 2, pp. 279–294.

    Article  CAS  PubMed  Google Scholar 

  23. Garnier, M., Boujrad, N., Ogwuegbu, S.O., and Hudson, J.R., Jr., Papadopoulos, V., J. Biol. Chem., 1994, vol. 269, no. 35, pp. 22105–22112.

    CAS  PubMed  Google Scholar 

  24. Teleshova, E.S., Bochkarev, V.K., Syunyakov, T.S., Bugaeva, T.P., and Neznamov, G.G., Psikhiatriya, 2010, vol. 46, no. 4, pp. 26–35.

    Google Scholar 

  25. Neznamov, G.G., Teleshova, E.S., and Bochkarev, V.K., Ter. Psikh. Zabol, 2002, no. 4, pp. 28–36.

    Google Scholar 

  26. V’yunova, T.V., Shevchenko, K.V., Shevchenko, V.P., Bezuglov, V.V., and Myasoedov, N.F., Radiokhimiya, 2009, vol. 51, no. 2, pp. 161–166.

    Google Scholar 

  27. V’yunova, T.V., Andreeva, L.A., Shevchenko, K.V., Shevchenko, V.P., Bobrov, M.Yu., Bezuglov, V.V., and Myasoedov, N.F., Dokl. Akad. Nauk, 2014, vol. 456, no. 4, pp. 490–493.

    Google Scholar 

  28. V’unova, T.V., Shevchenko, K.V., Shevchenko, V.P., Bobrov, M.Yu., Bezuglov, V.V., and Myasoedov, N.F., Neurochem. J., 2007, vol. 1, no. 1, pp. 37–42.

    Article  Google Scholar 

  29. Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W., and Sperk, G., Neuroscience, 2000, vol. 101, no. 4, pp. 815–850.

    Article  CAS  PubMed  Google Scholar 

  30. Sieghart, W., Fuchs, K., Tretter, V., Ebert, V., Jechlinger, M., Hoger, H., and Adamiker, D., Neurochem. Int., 1999, vol. 34, no. 5, pp. 379–385.

    Article  CAS  PubMed  Google Scholar 

  31. Skilbeck, K.J., Hinton, T., and Johnston, G.A., Neurochem. Int., 2008, vol. 52, pp. 1212–1219.

    Article  CAS  PubMed  Google Scholar 

  32. Olsen, R.W. and Sieghart, W., Neuropharmacology, 2009, vol. 56, pp. 141–148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mendu, S.K., Bhandage, A., Jin, Z., and Birnir, B., PLoS One, 2012, vol. 7, no. 8, p. 42959.

    Article  Google Scholar 

  34. Connolly, C.N. and Wafford, K.A., Biochem. Soc. Trans., 2004, vol. 32, pp. 529–534.

    Article  CAS  PubMed  Google Scholar 

  35. Miller, P.S. and Smart, T.G., Trends Pharmacol. Sci., 2010, vol. 31, no. 4, pp. 161–174.

    Article  CAS  PubMed  Google Scholar 

  36. Da Settimo, F., Taliani, S., Trincavelli, M.L., Montali, M., and Martini, C., Curr. Med. Chem., 2007, vol. 14, no. 25, pp. 2680–2701.

    Article  PubMed  Google Scholar 

  37. Smith, A.J., Alder, L., Silk, J., Adkins, C., Fletcher, A.E., Scales, T., Kerby, J., Marshall, G., Wafford, K.A., McKernan, R.M., and Atack, J.R., Mol. Pharmacol., 2001, vol. 59, no. 5, pp. 1108–1118.

    CAS  PubMed  Google Scholar 

  38. Sigel, E. and Luscher, B.P., Curr. Top. Med. Chem., 2011, vol. 11, no. 2, pp. 241–246.

    Article  CAS  PubMed  Google Scholar 

  39. Costa, E. and Guidotti, A., Life Sci., 1991, vol. 49, no. 5, pp. 325–344.

    Article  CAS  PubMed  Google Scholar 

  40. Slobodyansky, E., Guidotti, A., Wambebe, C., Berkovich, A., and Costa, E., J. Neurochem., 1989, vol. 53, no. 4, pp. 1276–84.

    Article  CAS  PubMed  Google Scholar 

  41. Costaa, J., Caamanoa, O., Fernandeza, F., Garcia-Meraa, X., Sampaio-Diasa, I.E., Breab, J.M., and Cadavid, M.I., Eur. J. Med. Chem., 2013, vol. 69, pp. 146–158.

    Article  Google Scholar 

  42. Follesa, P., Biggio, F., Caria, S., Gorini, G., and Biggio, G., Eur. J. Pharmacol., 2004, vol. 500, nos. 1–3, pp. 413–425.

    Article  CAS  PubMed  Google Scholar 

  43. Porcu, P., Mostallino, M.C., Sogliano, C., Santoru, F., Berretti, R., and Concas, A., Pharmacol., Biochem. Behav., 2012, vol. 102, no. 2, pp. 366–372.

    Article  CAS  Google Scholar 

  44. Tamaki, R., Yoshikawa, M., Shinomiya, T., Andoh, H., Kawaguchi, M., Hashimoto, A., Byrne, D.W., and Kobayashi, H., Tokai. J. Exp. Clin. Med., 2008, vol. 33, no. 1, pp. 46–50.

    CAS  PubMed  Google Scholar 

  45. Bristow, D.R. and Martin, I.L., Eur. J. Pharmacol., 1989, vol. 173, no. 1, pp. 65–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. V’yunova.

Additional information

Original Russian Text © T.V. V’yunova, L.A. Andreeva, K.V. Shevchenko, V.P. Shevchenko, N.F. Myasoedov, 2014, published in Neirokhimiya, 2014, Vol. 31, No. 4, pp. 300–306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

V’yunova, T.V., Andreeva, L.A., Shevchenko, K.V. et al. Peptide regulation of specific ligand-receptor interactions of GABA with the plasma membranes of nerve cells. Neurochem. J. 8, 259–264 (2014). https://doi.org/10.1134/S1819712414040114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712414040114

Keywords

Navigation