Skip to main content
Log in

An Experimental and Numerical Study on the Optimum Flow Rate of a Photovoltaic Thermal System Integrated with Phase Change Materials

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Photovoltaic thermal (PVT) systems can be defined as solar cogeneration systems, which generate both electrical and thermal energy by means of a single panel. Within the scope of Nearly Zero Energy Buildings (nZEBs), PVT systems based on phase change materials (PCMs) have a remarkable potential in meeting the electrical and thermal energy demand for both facade and roof applications in buildings. In PVT systems, phase change materials (PCMs) could be used to provide thermal energy after the sunset and to manage the heat load on the PV. In the present study, a PCM-based PVT system was modeled, established, and tested under real meteorological conditions. Experimental results for the ambient, inlet, and outlet temperatures and solar radiation are presented. The temperature distribution of the system was analyzed. The system was modeled in ANSYS FLUENT. The model was validated with application of experimental data. The determination coefficient between the modeled and experimental outlet temperatures was found to be 0.9444. The optimum flow rate was investigated for the system. The maximum outlet temperature was achieved at a flow rate of 19 l/h. The conclusion was that flow rates of 15–21 l/h can be used in studies as an ideal flow rate for a PVT-PCM system with paraffin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  1. https://www.iea.org/policies/12273-nearly-zero-energy-buildings-nzeb, access 28.04.2021.

  2. Haoshan, R., Zhenjun, M., Wenye, L., Wenke, F., and Weihua, L., Integrating Photovoltaic Thermal Collectors and Thermal Energy Storage Systems Using Phase Change Materials with Rotary Desiccant Cooling Systems, Sustain. Cities Soc., 2018, vol. 36, pp. 131–143; https://doi.org/10.1016/j.scs.2017.10.021.

    Article  Google Scholar 

  3. Kazemian, A., Salari, A., and Ma, T., A Year-Round Study of a Photovoltaic Thermal System Integrated with Phase Change Material in Shanghai Using Transient Model, Energy Convers. Manag., 2020, vol. 210, p. 112657; https://doi.org/10.1016/j.enconman.2020.112657.

    Article  Google Scholar 

  4. Vaishak, S. and Bhale, P.V., Effect of Dust Deposition on Performance Characteristics of a Refrigerant Based Photovoltaic/Thermal System, Sustain. Energy Technol. Assess., 2019, vol. 36, p. 100548; https://doi.org/10.1016/j.seta.2019.100548.

    Article  Google Scholar 

  5. Tian, L.-L., Liu, X., Chen, S., and Shen, Z.-G., Effect of Fin Material on PCM Melting in a Rectangular Enclosure, Appl. Therm. Eng., 2020, vol. 167, p. 114764; https://doi.org/10.1016/ j.applthermaleng.2019.114764.

    Article  Google Scholar 

  6. Parthiban, A., Reddy, K.S., Pesala, B., and Mallick, T.K., Effects of Operational and Environmental Parameters on the Performance of a Solar Photovoltaic-Thermal Collector, Energy Convers. Manag., 2020, vol. 205, p. 112428; https://doi.org/10.1016/j.enconman.2019.112428.

    Article  Google Scholar 

  7. Rahmanian, S. and Hamzavi, A., Effects of Pump Power on Performance Analysis of Photovoltaic Thermal System Using CNT Nanofluid, Sol. Energy, 2020, vol. 201, pp. 787–797; https://doi.org/10.1016/ j.solener.2020.03.061.

    Article  ADS  Google Scholar 

  8. Rad, M. A. V., Kasaeian, A., Mousavi, S., Rajaee, F., and Kouravand, A., Empirical Investigation of a Photovoltaic-Thermal System with Phase Change Materials and Aluminum Shavings Porous Media, Renew. Energy, 2021, vol. 167, pp. 662–675; https://doi.org/10.1016/j.renene.2020.11.135.

    Article  Google Scholar 

  9. Selimefendigil, F. and Öztop, H.F., Modeling and Identification of Combined Effects of Pulsating Inlet Temperature and Use of Hybrid Nanofluid on the Forced Convection in Phase Change Material Filled Cylinder, J. Taiwan Inst. Chem. Eng., 2021, vol. 119, pp. 90–107; https://doi.org/10.1016/j.jtice.2021.01.032.

    Article  Google Scholar 

  10. Salari, A., Kazemian, A., Ma, A., Hakkaki-Fard, A., and Peng, J., Nanofluid Based Photovoltaic Thermal Systems Integrated with Phase Change Materials: Numerical Simulation and Thermodynamic Analysis, Energy Convers. Manag., 2020, vol. 205, p. 112384; https://doi.org/10.1016/j.enconman.2019.112384.

    Article  Google Scholar 

  11. Mesgarpour, M., Heydari, A., Wongwises, S., and Gharib, M.R., Numerical Optimization of a New Concept in Porous Medium Considering Thermal Radiation: Photovoltaic Panel Cooling Application, Sol. Energy, 2021, vol. 216, pp. 452–467; https://doi.org/10.1016/j.solener.2021.01.035.

    Article  ADS  Google Scholar 

  12. Sheshpoli, A.Z., Jahanian, O., Nikzadfar, K., and Delavar, M.A., Numerical and Experimental Investigation on the Performance of Hybrid PV/Thermal Systems in the North of Iran, Sol. Energy, 2021, vol. 215; https://doi.org/10.1016/j.solener.2020.12.036.

    Article  ADS  Google Scholar 

  13. Kazemian, A., Salari, A. Hakkaki-Fard, A., and Ma, T., Numerical Investigation and Parametric Analysis of a Photovoltaic Thermal System Integrated with Phase Change Material, Appl. Energy, 2019, vol. 238, pp. 734–746; https://doi.org/10.1016/j.apenergy.2019.01.103.

    Article  Google Scholar 

  14. Yue, C., Zhang, Q., Zhai, Z., and Ling, L., Numerical Investigation on Thermal Characteristics and Flow Distribution of a Parallel Micro-Channel Separate Heat Pipe in Data Center, Int. J. Refrig., 2019, vol. 98, pp. 150–160; DOI: 10.1016/j.ijrefrig.2018.10.025

    Article  Google Scholar 

  15. Pang, W., Zhang, Q., Cui, Y., Zhang, L., Yu, H., Zhang, X., Zhang, Y., and Yan, H., Numerical Simulation and Experimental Validation of a Photovoltaic/Thermal System Based on a Roll-Bond Aluminum Collector, Energy, 2019, vol. 187, p. 115990; https://doi.org/10.1016/j.energy.2019.115990.

    Article  Google Scholar 

  16. Khatibi, M., Nemati-Farouji, R., Taheri, A., Kazemian, A., Ma, T., and Niazmand, H., Optimization and Performance Investigation of the Solidification Behavior of Nano-Enhanced Phase Change Materials in Triplex-Tube and Shell-and-Tube Energy Storage Units, J. Energy Storage, 2021, vol. 33, p. 102055; DOI: 10.1016/j.est.2020.102055

    Article  Google Scholar 

  17. Kazemian, A., Parcheforosh, A., Salari, A., and Ma, T., Optimization of a Novel Photovoltaic Thermal Module in Series with a Solar Collector Using Taguchi Based Grey Relational Analysis, Sol. Energy, 2021, vol. 215, pp. 492–507.

    Article  ADS  Google Scholar 

  18. Nižetić, S., Jurčević, M., Čoko, D., Ar\(\imath\)c\(\imath\), M., and Hoang, A.T., Implementation of Phase Change Materials for Thermal Regulation of Photovoltaic Thermal Systems: Comprehensive Analysis of Design Approaches, Energy, 2021, vol. 228, p. 120546.

    Article  Google Scholar 

  19. Shahsavar, A., Jha, P., Arici, M., and Kefayati, G., A Comparative Experimental Investigation of Energetic and Exergetic Performances of Water/Magnetite Nanofluid-Based Photovoltaic/Thermal System Equipped with Finned and Unfinned Collectors, Energy, 2021, vol. 220, p. 119714.

    Article  Google Scholar 

  20. Naghibi, Z., Ekhtiari, S., Carriveau, R., and Ting, D.-K., Hybrid Solar Thermal/Photovoltaic-Battery Energy Storage System in a Commercial Greenhouse: Performance and Economic Analysis, Energy Storage, 2021, vol. 3, no. 1; https://doi.org/10.1002/est2.215.

  21. Maghrabie, H.M., Elsaid, H., Sayed, E.T., Abdelkareem, M.A., Wilberforce, T., and Olabi, A.G., Building-Integrated Photovoltaic/Thermal (BIPVT) Systems: Applications and Challenges, Sustain. Energy Technol. Assess., 2021, vol. 45, p. 101151.

    Article  Google Scholar 

  22. Antony, A., Wang, Y.D., and Roskilly, A.P., A Detailed Optimisation of Solar Photovoltaic/Thermal Systems and Its Application, Energy Procedia, 2019, vol. 158, pp. 1141–1148; DOI: 10.1016/j.egypro.2019.01.295

    Article  Google Scholar 

  23. Ali, A.H.H., Design Optimization of Staggered Plates’ Channel Heated by Radiation Heat Flux Based on the Convective Heat Transfer and Fluid Flow for Hybrid Photovoltaic/Thermal System, Sustain. Energy Technol. Assess., 2017, vol. 24, pp. 55–70; https://doi.org/10.1016/j.seta.2017.01.009.

    Article  Google Scholar 

  24. Belussi, L., Barozzi, B., Bellazzi, A., Danza, L., Devitofrancesco, A., Fanciulli, C., Ghellere, M., Guazzi, G., Meroni, I., Salamone, F., Scamoni, F., and Scrosati, C., A Review of Performance of Zero Energy Buildings and Energy Efficiency Solutions, J. Build. Eng., 2019, vol. 25, p. 100772; https://doi.org/10.1016/ j.jobe.2019.100772.

    Article  Google Scholar 

  25. Zhou, Y., Zheng, S., and Zhang, G., Multivariable Optimisation of a New PCMs Integrated Hybrid Renewable System with Active Cooling and Hybrid Ventilations, J. Build. Eng., 2019, vol. 26, p. 100845; DOI: 10.1016/j.jobe.2019.100845

    Article  Google Scholar 

  26. Misha, S., Abdullah, A. L., Tamaldin, N., Rosli, M.A.M., and Sachit, F.A., Simulation CFD and Experimental Investigation of PVT Water System under Natural Malaysian Weather Conditions, Energy Rep., 2020, vol. 6, pp. 28–44.

    Article  Google Scholar 

  27. Kandilli, C., Energy, Exergy, and Economical Analyses of a Photovoltaic Thermal System Integrated with the Natural Zeolites for Heat Management, Int. J. Energy. Res., 2019, vol. 43, pp. 4670–4685; https://doi.org/10.1002/er.4605.

    Article  Google Scholar 

  28. Kandilli, C. and Mertoplu, B., Optimisation Design and Operation Parameters of a Photovoltaic Thermal System Integrated with Natural Zeolite, Int. J. Hydromechatronics, 2020, vol. 3, no. 2, pp. 128–139.

    Article  Google Scholar 

  29. He, Y., Xiao, L., Yang, Y., and Wang, Y., PCM Thermal Conductivity Effect on Mechanism of PV/PCM Thermal Control Characteristics, Int. Green Energy, 2020, vol. 17, no. 12, pp. 783–792; DOI: 10.1080/ 15435075.2020.1798769

    Article  Google Scholar 

  30. https://www.mercankimya.com.tr/, access 28.04.2021.

  31. ANSYS Fluent 16.0 Theory Guide.

  32. Pavlenko, A.N., Kuznetsov, D.V., and Bessmeltsev, V.P., Experimental Study on Heat Transfer and Critical Heat Flux during Pool Boiling of Nitrogen on 3D Printed Structured Copper Capillary-Porous Coatings. J. Eng. Therm., 2021, vol. 30, pp. 341–349; https://doi.org/10.1134/S1810232821030012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Kandilli or B. Mertoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandilli, C., Mertoglu, B. An Experimental and Numerical Study on the Optimum Flow Rate of a Photovoltaic Thermal System Integrated with Phase Change Materials. J. Engin. Thermophys. 31, 458–476 (2022). https://doi.org/10.1134/S1810232822030080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822030080

Navigation