Skip to main content
Log in

Experimental Study on Optimizing Photovoltaic Panel Efficiency: Harnessing Paraffin Wax Phase Change for Temperature Reduction

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

High operating temperatures adversely affect photovoltaic (PV) efficiency, motivating research into cooling techniques. This study experimentally investigates using phase change materials (PCMs) to passively absorb excess heat from PV panels. Paraffin wax with a 42 °C melting point was selected as the PCM and integrated in a 4-cm-thick layer on the back of a crystalline silicon PV panel. Temperatures were monitored within the PCM layer and PV back surface using thermocouples. A reference PV panel lacking PCM was tested under identical conditions. During peak irradiance, the PCM reduced the PV back temperature by 5–8 °C versus the reference. This cooling boosted electrical efficiency of the PCM–PV panel to 12.5–19.66%, while the reference panel ranged from 11.32 to 18.23%. The substantial efficiency improvements demonstrate the promise of PCM thermal management for mitigating temperature-related losses. This study provides initial experimental evidence that PCM integration represents a viable passive cooling approach for enhancing PV performance in hot climates. Ongoing work is needed to optimize PCM selection and fully assess benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

The data presented in this study are available in this article.

References

  1. Nižetić, S.; Giama, E.; Papadopoulos, A.: Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, part II: active cooling techniques. Energy Convers. Manag. 155, 301–323 (2018)

    Article  Google Scholar 

  2. Abdelrazik, A.S.; Al-Sulaiman, F.; Saidur, R.; Ben-Mansour, R.: A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems. Renew. Sustain. Energy Rev. 95, 110–129 (2018)

    Article  Google Scholar 

  3. Fuentes, M.; Vivar, M.; De La Casa, J.; Aguilera, J.: An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV. Renew. Sustain. Energy Rev. 93, 110–120 (2018)

    Article  Google Scholar 

  4. Joshi, S.S.; Dhoble, A.S.: Photovoltaic-thermal systems (PVT): technology review and future trends. Renew. Sustain. Energy Rev. 92, 848–882 (2018)

    Article  Google Scholar 

  5. Sultan, S.M.; Efzan, M.E.: Review on recent photovoltaic/thermal (PV/T) technology advances and applications. Sol. Energy 173, 939–954 (2018)

    Article  Google Scholar 

  6. Kumar, R.; Rosen, M.A.: Performance evaluation of a double pass PV/T solar air heater with and without fins. Appl. Therm. Eng. 31(8–9), 1402–1410 (2011)

    Article  Google Scholar 

  7. Bhattarai, S.; Oh, J.-H.; Euh, S.-H.; Kafle, G.K.; Kim, D.H.: Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Sol. Energy Mater. Sol. Cells 103, 184–193 (2012)

    Article  Google Scholar 

  8. Long, H.; Chow, T.-T.; Ji, J.: Building-integrated heat pipe photovoltaic/thermal system for use in Hong Kong. Sol. Energy 155, 1084–1091 (2017)

    Article  Google Scholar 

  9. Sardarabadi, M.; Passandideh-Fard, M.: Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol. Energy Mater. Sol. Cells 157, 533–542 (2016)

    Article  Google Scholar 

  10. Huang, M.; Eames, P.; Norton, B.: The application of computational fluid dynamics to predict the performance of phase change materials for control of photovoltaic cell temperature in buildings. In: World Renewable Energy Congress VI, pp. 2123–2126. Elsevier (2000)

  11. Browne, M.C.; Lawlor, K.; Kelly, A.; Norton, B.; McCormack, S.J.: Indoor characterisation of a photovoltaic/thermal phase change material system. Energy Procedia 70, 163–171 (2015)

    Article  Google Scholar 

  12. Rosenthal, A.H.; Gonçalves, B.P.; Beckwith, J.; Gulati, R.; Compere, M.D.; Boetcher, S.K.: Phase-change material to thermally regulate photovoltaic panels to improve solar to electric efficiency. In: ASME International Mechanical Engineering Congress and Exposition, vol. 57502, p. V08BT10A009. American Society of Mechanical Engineers (2015)

  13. Waqas, A.; Jie, J.: Effectiveness of phase change material for cooling of photovoltaic panel for hot climate. J. Sol. Energy Eng. 140(4), 041006 (2018)

    Article  Google Scholar 

  14. Khanna, S.; Reddy, K.; Mallick, T.K.: Optimization of solar photovoltaic system integrated with phase change material. Sol. Energy 163, 591–599 (2018)

    Article  Google Scholar 

  15. Hachem, F.; Abdulhay, B.; Ramadan, M.; El Hage, H.; El Rab, M.G.; Khaled, M.: Improving the performance of photovoltaic cells using pure and combined phase change materials–experiments and transient energy balance. Renew. Energy 107, 567–575 (2017)

    Article  Google Scholar 

  16. Preet, S.; Bhushan, B.; Mahajan, T.: Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Sol. Energy 155, 1104–1120 (2017)

    Article  Google Scholar 

  17. Al-Waeli, A.H., et al.: Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers. Manag. 151, 693–708 (2017)

    Article  Google Scholar 

  18. Gaur, A.; Ménézo, C.; Giroux, S.: Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium. Renew. Energy 109, 168–187 (2017)

    Article  Google Scholar 

  19. Su, D.; Jia, Y.; Alva, G.; Liu, L.; Fang, G.: Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Convers. Manag. 131, 79–89 (2017)

    Article  Google Scholar 

  20. Alwan, A.A.; Hassan, A.M.: Development of electrical power output simulation for photovoltaic cell. J. Eng. Appi. Sci 13, 10713–10724 (2018)

    Google Scholar 

  21. Huang, M.; Eames, P.; Norton, B.: Phase change materials for limiting temperature rise in building integrated photovoltaics. Sol. Energy 80(9), 1121–1130 (2006)

    Article  Google Scholar 

  22. Hasan, A.; McCormack, S.; Huang, M.; Norton, B.: Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 84(9), 1601–1612 (2010)

    Article  Google Scholar 

  23. Malvi, C.; Dixon-Hardy, D.; Crook, R.: Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material. Sol. Energy 85(7), 1440–1446 (2011)

    Article  Google Scholar 

  24. Maiti, S.; Banerjee, S.; Vyas, K.; Patel, P.; Ghosh, P.K.: Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Sol. Energy 85(9), 1805–1816 (2011)

    Article  Google Scholar 

  25. Park, J.; Kim, T.; Leigh, S.-B.: Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol. Energy 105, 561–574 (2014)

    Article  Google Scholar 

  26. Atkin, P.; Farid, M.M.: Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Sol. Energy 114, 217–228 (2015)

    Article  Google Scholar 

  27. NematpourKeshteli, A.; Iasiello, M.; Langella, G.; Bianco, N.: Increasing melting and solidification performances of a phase change material-based flat plate solar collector equipped with metal foams, nanoparticles, and wavy wall-Y-shaped surface. Energy Convers. Manag. 291, 117268 (2023)

    Article  Google Scholar 

  28. Bianco, N.; Fragnito, A.; Iasiello, M.; Mauro, G.M.: A CFD multi-objective optimization framework to design a wall-type heat recovery and ventilation unit with phase change material. Appl. Energy 347, 121368 (2023)

    Article  Google Scholar 

  29. Kuta, M.: Mobilized thermal energy storage (M-TES) system design for cooperation with geothermal energy sources. Appl. Energy 332, 120567 (2023)

    Article  Google Scholar 

  30. Mousa, M.; Bayomy, A.; Saghir, M.: Long-term performance investigation of a GSHP with actual size energy pile with PCM. Appl. Therm. Eng. 210, 118381 (2022)

    Article  Google Scholar 

  31. Alsagri, A.S.: Thermodynamic investigation of a photovoltaic/thermal heat pipe energy system integrated with phase change material. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08362-y

    Article  Google Scholar 

  32. Heim, D., et al.: European roadmap for the En-ActivETICS advancement and potential of the PV/PCM unventilated wall system application. Energy Build. 294, 113207 (2023)

    Article  Google Scholar 

  33. Wang, Z.; Chen, X.; Liu, Z.: Comparative study on heat transfer characteristics of molten PCM in PV/PCM air-based system based on grey relation analyses. Numer. Heat Transf. Part A Appl. 84(4), 377–399 (2023)

    Article  Google Scholar 

  34. Sardarabadi, M.; Passandideh-Fard, M.; Maghrebi, M.-J.; Ghazikhani, M.: Experimental study of using both ZnO/water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Sol. Energy Mater. Sol. Cells 161, 62–69 (2017)

    Article  Google Scholar 

  35. Skoplaki, E.; Palyvos, J.A.: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83(5), 614–624 (2009)

    Article  Google Scholar 

  36. Evans, D.: Simplified method for predicting photovoltaic array output. Sol. Energy 27(6), 555–560 (1981)

    Article  Google Scholar 

  37. Karthick, A.; Murugavel, K.K.; Ramanan, P.: Performance enhancement of a building-integrated photovoltaic module using phase change material. Energy 142, 803–812 (2018)

    Article  Google Scholar 

  38. Tan, L.P.: Passive Cooling of Concentrated Solar Cells Using Phase Change Material Thermal Storage. RMIT University, Melbourne (2013)

    Google Scholar 

  39. Sharma, S.; Tahir, A.; Reddy, K.; Mallick, T.K.: Performance enhancement of a Building-Integrated Concentrating Photovoltaic system using phase change material. Sol. Energy Mater. Sol. Cells 149, 29–39 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Mechanics in the College of Engineering, University of Babylon, Iraq, for allowing them to conduct the experiments in the laboratories.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Hassan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwan, A.A., Hassan, A.M. Experimental Study on Optimizing Photovoltaic Panel Efficiency: Harnessing Paraffin Wax Phase Change for Temperature Reduction. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08581-3

Keywords

Navigation