Skip to main content
Log in

Experimental Study of Liquid Flow Maldistribution in Sulzer 500X Structured Packing and Raschig Super-Ring Random Packing

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This paper presents the results of an experimental study of the formation of large-scale non-uniformity of liquid flow on a RSR metal random packing of 0.47 m in diameter and a Sulzer 500X structured packing of 0.6 m in diameter. The experiments on the RSR packing were carried out with water without vapor flow for the superficial velocity of the liquid varying as \(3\cdot 10^{-3}< L_{0}<12\cdot 10^{-3}\) m/s. The experiments on the Sulzer 500X structured packing were conducted in a distillation column with separation of R114/R21 freon mixture under total reflux conditions. The superficial velocity of the liquid varied in the range \(3.5 \cdot 10^{-3}< L_{0}<6.7\cdot 10^{-3}\) m/s; the vapor load varied in the range 1.3 < F-factor < 2 Pa0.5. It is shown that the amount of liquid retained on the column wall at the outlet from the Sulzer 500X packing practically does not change in the investigated range of operating parameters. For the superficial velocity of the liquid varying as \(3.5\cdot 10^{-3}< L_{0}<5\cdot 10^{-3}\) m/s, the liquid maldistribution factor for the Sulzer 500X packing is three times less than that for the RSR random packing. The resulting experimental data will help to construct and verify models for calculating the efficiency of separation of mixtures on packings in industrial column apparatus with quantitative allowance for the effect of the scale factor, which is associated with large-scale non-uniformity of local flow parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Manh, T.D., Nam, N.D., Babazadeh, H., and Moradi, R., Characterization of New Wire Gauze-Structured Packing: Experimental Study, Chem. Engin. Technol., 2020, vol. 43, no. 12, pp. 2469–2476; doi.org/ 10.1002/ceat.202000092.

    Article  Google Scholar 

  2. Gao, H., Liu, S., Luo, X., Zhang, H., and Liang, Z., Investigation of Hydrodynamic Performance and Effective Mass Transfer Area for Sulzer DX Structured Packing, AIChE, 2018, no. 64, pp. 3625–3637; doi.org/10.1002/aic.16346.

    Article  Google Scholar 

  3. Hassanvand, A., Esmaeili-Faraj, S.H., Moghaddam, M.S., and Moradi, R., Characterization of a New Structured Packing by Computational Fluid Dynamics, Chem. Engin. Technol., 2021, vol. 44, no. 1, pp. 156–163; doi.org/10.1002/ceat.202000237.

    Article  Google Scholar 

  4. Kang, S.J. and Lim, D.H., A Study on the Hydraulic Characteristics of Rashig Super-Ring Random Packing in a Counter-Current Packed Tower, Clean Technol., 2020, vol. 26, no. 2, pp. 102–108.

    Google Scholar 

  5. Hlawitschka, M.W., Schmidt, S., Bart, H.-J., and Schultes, M., Raschig Super-Ring Operating Characteristics in Unpulsed Liquid–Liquid Extraction Columns, Chem. Engin. Technol., 2015, vol. 38. pp. 446–454; https://doi.org/10.1002/ceat.201400561.

    Article  Google Scholar 

  6. Hanusch, F., Rehfeldt, S., and Klein H., Liquid Maldistribution in Random Packed Columns: Experimental Investigation of Influencing Factors, Chemie Ingenieur Technik, 2017, vol. 89, no. 11, pp. 1550–1560; https://doi.org/10.1002/cite.201700015.

    Article  Google Scholar 

  7. Dzhonova-Atanasova, D., Petrova, T., Semkov, Kr., Darakchiev, S., Stefanova, K., Nakov, S. and Popov, R., Experimental Investigation of Liquid Distribution in Open-Structure Random Packings as a Basis for Model Refinement, Chem. Engin. Transact., 2018, vol. 70, pp. 2077–2082; https://doi.org/10.3303/CET1870347.

    Article  Google Scholar 

  8. Schultes, M., Raschig Super-Ring: A New Fourth Generation Packing Offers New Advantages, Chem. Engin. Res. Design, 2003, vol. 81, no. 1, pp. 48–57; https://doi.org/10.1205/026387603321158186.

    Article  Google Scholar 

  9. Bu, S.S., Yang, J., Zhou, M., Wang, Q.W., Li, S.Y., and Guo, Z.X., On Contact Point Modifications for Forced Convective Heat Transfer Analysis in a Structured Packed Bed of Spheres, Nuclear Engin. Design, 2014, vol. 270, pp. 21–33; https://doi.org/10.1016/j.nucengdes.2014.01.001.

    Article  Google Scholar 

  10. Kagan, A.M., Laptev, A.G., Pushnov, A.S., and Farakhov, M.I., Kontaktnye nasadki promyshlennykh teplomassoobmennykh apparatov (Contact Packings for Industrial Heat and Mass Transfer Appliances), Laptev, A.G., Ed., Kazan: Otechestvo, 2013.

  11. Petrova, T., Semkov, Kr., and Dzhonova-Atanasova, D., Modeling of Liquid Distribution in a Packed Column with Open-Structure Random Packings, Chem. Engin. Transact., 2018, vol. 70, pp. 1051–1056; https://doi.org/10.3303/CET1870176.

    Article  Google Scholar 

  12. Pavlenko, A.N., Zhukov, V.E., Pecherkin, N.I., Nazarov, A.D., Slesareva, E.Yu., Li, X., and Sui, H., Efficiency of Mixture Separation in Distillation Columns with Structured Packings under Conditions of Dynamically Controlled Irrigation, J. Eng. Therm., 2019, vol. 28, no. 3, pp. 313–323; DOI: 10.1134/S1810232819030020.

    Article  Google Scholar 

  13. Pavlenko, A.N., Zhukov, V.E., Pecherkin, N.I., Chekhovich, V.Yu., Volodin, O.A., Shilkin, A., and Grossmann, C., Investigation of Flow Parameters and Efficiency of Mixture Separation on a Structured Packing, AIChE, 2014, vol. 60, no. 2, pp. 690–705; DOI: 10.1002/aic.14298.

    Article  Google Scholar 

  14. Basha, O.M., Wang, R., Gamwo, I.K., Siefert, N.S., and Morsi, B.I., Full-Scale CFD Modeling of Multiphase Flow Distribution in a Packed-Bed Absorber with Structured Packing Mellapak 250Y, Int. J. Chem. Reactor Engin., 2020, vol. 18, no. 3, p. 20190207; doi.org/10.1515/ijcre-2019-0207.

    Article  Google Scholar 

  15. Chen, J.B., Liu, C.J., Yuan, X.G., and Yu, G.C., CFD Simulation of Flow and Mass Transfer in Structured Packing Distillation Columns, Chinese J. Chem. Engin., 2009, vol. 17, no. 3, pp. 381–388; DOI: 10.1016/S1004-9541(08)60220-7.

    Article  Google Scholar 

  16. Amini, Y. and Nasr Esfahany, M., CFD Simulation of the Structured Packings: A Review, Separation Sci. Technol., 2019, vol. 54, no. 15, pp. 2536–2554; doi.org/10.1080/01496395.2018.1549078.

    Article  Google Scholar 

  17. Manh, T.D., Nam, N.D., Babazadeh, H., and Moradi, R., Computational Fluid Dynamics Characterization of High-Capacity Structured Packing, Chem. Engin. Technol., 2020, vol. 43, no. 9, pp. 1690–1698; doi.org/10.1002/ceat.202000060.

    Article  Google Scholar 

  18. Pavlenko, A.N., Zhukov, V.E., Pecherkin, N.I., and Slesareva, E.Y., Occurrence of Large-Scale Maldistribution of Local Parameters of Mixture Flows Across Cross Section of Structured Packing Distillation Column, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 195–204; https://doi.org/10.1134/S1810232820020010.

    Article  Google Scholar 

  19. Boyadjiev, Chr., Boyadjiev, B., Doichinova, M., and Popova-Krumova, P., Modeling of Column Apparatus Processes, 2nd ed., Springer, 2018, p. 456; DOI: 10.1007/978-3-319-89966-4.

    Book  Google Scholar 

  20. Boyadjiev, Chr. and Boyadjiev, B., New Approach to Modeling and Simulation of Chemical and Mass Transfer Processes in Column Apparatuses, Recent Innovat. Chem. Engin. (formerlyRecent Patents on Chem. Engin.), 2019, vol. 12, no. 1, pp. 79–95; DOI: 10.2174/2405520411666181102161727.

    Article  Google Scholar 

  21. Serov, A.F., Pavlenko, A.N., Pecherkin, N.I., Nazarov, A.D., Krotov, S.V., and Zhukov, V.E., Bubble Flow Rate Meter for the Study of Jet-Droplet Flows in Mass-Exchange Apparatuses, Instruments Exp. Techn., 1998, vol. 41, no. 5, pp. 727–731.

    Google Scholar 

  22. Dzhonova-Atanasova, D., Petrova, T., Darakchiev, S., Panayotova, P., Nakov, Sv., Popov, R., and Semkov, K., Measurement of Liquid Distribution in Random Raschig Super-Ring Packing, Sci. Works Univ. Food Technol., 2014, vol. 61, pp. 644–647.

    Google Scholar 

  23. Schultes, M., Influence of Liquid Redistributors on the Mass-Transfer Efficiency of Packed Columns, Ind. Eng. Chem. Res., 2000, vol. 39, pp. 1381–1389; https://doi.org/10.1021/ie990437j.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pavlenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, A.N., Zhukov, V.E., Sukhorukova, E.Y. et al. Experimental Study of Liquid Flow Maldistribution in Sulzer 500X Structured Packing and Raschig Super-Ring Random Packing. J. Engin. Thermophys. 30, 171–183 (2021). https://doi.org/10.1134/S1810232821020016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821020016

Navigation