Skip to main content
Log in

Escape Times Across the Golden Cantorus of the Standard Map

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider the Chirikov standard map for values of the parameter larger than but close to Greene’s \(k_{G}\). We investigate the dynamics near the golden Cantorus and study escape rates across it. Mackay [17, 19] described the behaviour of the mean of the number of iterates \(\left<N_{k}\right>\) to cross the Cantorus as \(k\to k_{G}\) and showed that there exists \(B<0\) so that \(\left<N_{k}\right>(k-k_{G})^{B}\) becomes 1-periodic in a suitable logarithmic scale. The numerical explorations here give evidence of the shape of this periodic function and of the relation between the escape rates and the evolution of the stability islands close to the Cantorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. For a \(q\)-periodic point of (1.1), the symbol tr refers to the trace of the differential matrix of \(M_{k}^{q}\) evaluated at the periodic point.

  2. We will slightly change this notation in Section 4.

  3. This point has to be chosen on different sides of the symmetry line depending on the parity due to the fact that two periodic orbits with consecutive approximants as rotation number lie on different sides of the invariant curve or Cantorus.

  4. In the case of the standard map (1.1), it can be found either on the lines \(\{y=2x\}\) and \(\{y=2x-1\}\) or in one of them, depending on \(j\).

  5. For iterates \(\geqslant 14\) small chaotic zones are visible by magnifying the plot in the electronic version.

References

  1. Arioli, G. and Koch, H., The Critical Renormalization Fixed Point for Commuting Pairs of Area-Preserving Maps, Comm. Math. Phys., 2010, vol. 295, no. 2, pp. 415–429.

    Article  MathSciNet  Google Scholar 

  2. Batut, C., Belabas, K., Bernardi, D., Cohen, H., and Olivier, M., Users’ Guide to PARI/GP, http://pari.math.u-bordeaux.fr/(version 2.13.3).

  3. Berretti, A. and Gentile, G., Scaling of the Critical Function for the Standard Map: Some Numerical Results, Nonlinearity, 2004, vol. 17, no. 2, pp. 649–670.

    Article  MathSciNet  Google Scholar 

  4. Calleja, R. and de la Llave, R., A Numerically Accessible Criterion for the Breakdown of Quasiperiodic Solution and Its Rigorous Justification, Nonlinearity, 2010, vol. 23, no. 9, pp. 2029–2058.

    Article  MathSciNet  Google Scholar 

  5. Chirikov, B. V., A Universal Instability of Many-Dimensional Oscillator Systems, Phys. Rep., 1979, vol. 52, no. 5, pp. 264–379.

    Article  MathSciNet  Google Scholar 

  6. Cincotta, P. M. and Simó, C., Global Dynamics and Diffusion in the Rational Standard Map, Phys. D, 2020, vol. 413, 132661, 14 pp.

    Article  MathSciNet  Google Scholar 

  7. Dana, I. and Fishman, S., Diffusion in the Standard Map, Phys. D, 1985, vol. 17, no. 1, pp. 63–74.

    Article  MathSciNet  Google Scholar 

  8. Falcolini, C. and de la Llave, R., A Rigorous Partial Justification of Greene’s Criterion, J. Statist. Phys., 1992, vol. 67, no. 3–4, pp. 609–643.

    Article  MathSciNet  Google Scholar 

  9. Falcolini, C. and de la Llave, R., Numerical Calculation of Domains of Analyticity for Perturbation Theories in the Presence of Small Divisors, J. Statist. Phys., 1992, vol. 67, no. 3–4, pp. 645–666.

    Article  MathSciNet  Google Scholar 

  10. Figueras, J.-Ll., Haro, À., and Luque, A., Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach, Found. Comput. Math., 2017, vol. 17, no. 5, pp. 1123–1193.

    Article  MathSciNet  Google Scholar 

  11. Golé, Ch., Symplectic Twist Maps: Global Variational Techniques, Adv. Ser. Nonlinear Dyn., vol. 18, River Edge, N.J.: World Sci., 2001.

    Book  Google Scholar 

  12. Greene, J. M., A Method for Determining Stochastic Transition, J. Math. Phys., 1979, vol. 20, no. 6, pp. 1183–1201.

    Article  Google Scholar 

  13. Haydn, N. T. A., On Invariant Curves under Renormalisation, Nonlinearity, 1990, vol. 3, no. 3, pp. 887–912.

    Article  MathSciNet  Google Scholar 

  14. Kadanoff, L. P. and Shenker, S. J., Critical Behavior of a KAM Surface: 1. Empirical Results, J. Stat. Phys., 1982, vol. 27, no. 4, pp. 631–656.

    Article  MathSciNet  Google Scholar 

  15. Koch, H., On Hyperbolicity in the Renormalization of Near-Critical Area-Preserving Maps, Discrete Contin. Dyn. Syst., 2016, vol. 36, no. 12, pp. 7029–7056.

    Article  MathSciNet  Google Scholar 

  16. de la Llave, R. and Olvera, A., The Obstruction Criterion for Non-Existence of Invariant Circles and Renormalization, Nonlinearity, 2006, vol. 19, no. 8, pp. 1907–1937.

    Article  MathSciNet  Google Scholar 

  17. MacKay, R. S., A Renormalisation Approach to Invariant Circles in Area-Preserving Maps, Phys. D, 1983, vol. 7, no. 1–3, pp. 283–300.

    Article  MathSciNet  Google Scholar 

  18. MacKay, R. S., Greene’s Residue Criterion, Nonlinearity, 1992, vol. 5, no. 1, pp. 161–187.

    Article  MathSciNet  Google Scholar 

  19. MacKay, R. S., Renormalisation in Area-Preserving Maps, Adv. Ser. Nonlinear Dyn., vol. 6, River Edge, N.J.: World Sci., 1992.

  20. MacKay, R. S., Existence of Invariant Circles for Infinitely Renormalisable Area-Preserving Maps, in Dynamics, Games and Science: 1, M. M. Peixoto, A. A. Pinto, D. A. Rand (Eds.), Springer Proc. Math., vol. 1, Heidelberg: Springer, 2011, pp. 631–636.

    Chapter  Google Scholar 

  21. MacKay, R. S., Meiss, J. D., and Percival, I. C., Transport in Hamiltonian Systems, Phys. D, 1984, vol. 13, no. 1–2, pp. 55–81.

    Article  MathSciNet  Google Scholar 

  22. Martínez, R. and Simó, C., Invariant Manifolds at Infinity of the RTBP and the Boundaries of Bounded Motion, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 745–765.

    Article  MathSciNet  Google Scholar 

  23. Mather, J. N., Nonexistence of Invariant Circles, Ergodic Theory Dynam. Systems, 1984, vol. 4, no. 2, pp. 301–309.

    Article  MathSciNet  Google Scholar 

  24. Mather, J. N., A Criterion for the Nonexistence of Invariant Circles, Inst. Hautes Études Sci. Publ. Math., 1986, no. 63, pp. 153–204.

    Article  MathSciNet  Google Scholar 

  25. Meiss, J. D., Symplectic Maps, Variational Principles, and Transport, Rev. Modern Phys., 1992, vol. 64, no. 3, pp. 795–848.

    Article  MathSciNet  Google Scholar 

  26. Meiss, J. D., Thirty Years of Turnstiles and Transport, Chaos, 2015, vol. 25, no. 9, 097602, 17 pp.

    Article  MathSciNet  Google Scholar 

  27. Miguel, N., Simó, C., and Vieiro, A., Effect of Islands in Diffusive Properties of the Standard Map for Large Parameter Values, Found. Comput. Math., 2015, vol. 15, no. 1, pp. 89–123.

    Article  MathSciNet  Google Scholar 

  28. Olvera, A. and Simó, C., An Obstruction Method for the Destruction of Invariant Curves, Phys. D, 1987, vol. 26, no. 1–3, pp. 181–192.

    Article  MathSciNet  Google Scholar 

  29. Simó, C. and Treschev, D., Evolution of the “Last” Invariant Curve in a Family of Area Preserving Maps, Preprint, 1998 (see http://www.maia.ub.es/dsg/1998/index.html).

  30. Simó, C. and Vieiro, A., Resonant Zones, Inner and Outer Splittings in Generic and Low Order Resonances of Area Preserving Maps, Nonlinearity, 2009, vol. 22, no. 5, pp. 1191–1245.

    Article  MathSciNet  Google Scholar 

  31. Stirnemann, A., Renormalization for Golden Circles, Comm. Math. Phys., 1993, vol. 152, no. 2, pp. 369–431.

    Article  MathSciNet  Google Scholar 

  32. Stirnemann, A., Towards an Existence Proof of MacKay’s Fixed Point, Comm. Math. Phys., 1997, vol. 188, no. 3, pp. 723–735.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Jaume Timoneda for maintaining the computing facilities of the Dynamical Systems Group of the Universitat de Barcelona, which have been widely used in this work.

Funding

This work has been supported by grants PID2019-104851GB-I00 (Spain) and 2017-SGR-1374 (Catalonia). AV also acknowledges the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Narcís Miguel, Carles Simó or Arturo Vieiro.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the memory of Alexey V. Borisov

MSC2010

37E40, 37E20, 37C05

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miguel, N., Simó, C. & Vieiro, A. Escape Times Across the Golden Cantorus of the Standard Map. Regul. Chaot. Dyn. 27, 281–306 (2022). https://doi.org/10.1134/S1560354722030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354722030029

Keywords

Navigation