Skip to main content
Log in

Computational method for phase space transport with applications to lobe dynamics and rate of escape

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems.While the former approach studies how regions of phase space get transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing certain barriers. Lobe dynamics describes global transport in terms of lobes, parcels of phase space bounded by stable and unstable invariant manifolds associated to hyperbolic fixed points of the system. Escape from a potential well describes how the critical events occur and quantifies the rate of escape using the flux across the barriers. Both of these frameworks require computation of curves, intersection points, and the area bounded by the curves. We present a theory for classification of intersection points to compute the area bounded between the segments of the curves. This involves the partition of the intersection points into equivalence classes to apply the discrete form of Green’s theorem. We present numerical implementation of the theory, and an alternate method for curves with nontransverse intersections is also presented along with a method to insert points in the curve for densification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross, Sh. D. and Tallapragada, P., Detecting and Exploiting Chaotic Transport in Mechanical Systems, in Applications of Chaos and Nonlinear Dynamics in Science and Engineering: Vol. 2, S. Banerjee, L. Rondoni, M. Mitra (Eds.), Berlin: Springer,2012, pp. 155–183.

    Chapter  Google Scholar 

  2. Rom-Kedar, V., Leonard, A., and Wiggins, S, An Analytical Study of Transport, Mixing and Chaos in an Unsteady Vortical Flow, J. Fluid Mech., 1990, vol. 214, pp. 347–394.

    Article  MathSciNet  MATH  Google Scholar 

  3. Wiggins, S, On the Geometry of Transport in Phase Space: 1. Transport in k-Degree-of-Freedom Hamiltonian Systems, 2 k < 8, Phys. D, 1990, vol. 44, no. 3, pp. 471–501.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gillilan, R. E. and Ezra, G. S, Transport and Turnstiles in Multidimensional Hamiltonian Mappings for Unimolecular Fragmentation: Application to van derWaals Predissociation, J. Chem. Phys., 1991, vol. 94, no. 4, pp. 2648–2668.

    Article  Google Scholar 

  5. Beigie, D, Multiple Separatrix Crossing in Multi-Degree-of-Freedom Hamiltonian Flows, J. Nonlinear Sci., 1995, vol. 5, no. 1, pp. 57–103.

    Article  MathSciNet  MATH  Google Scholar 

  6. Beigie, D., Codimension-One Partitioning and Phase Space Transport in Multi-Degree-of-Freedom Hamiltonian Systems with Non-Toroidal Invariant Manifold Intersections. Decidability and Predictability in the Theory of Dynamical Systems, Chaos Solitons Fractals, 1995, vol. 5, no. 2, pp. 177–211.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lekien, F., Shadden, Sh. C., and Marsden, J. E, Lagrangian Coherent Structures in n-Dimensional Systems, J. Math. Phys., 2007, vol. 48, no. 6, 065404, 19 pp.

    Article  MathSciNet  MATH  Google Scholar 

  8. Koon, W. S., Lo, M.W., Marsden, J. E., and Ross, Sh. D., Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics, Chaos, 2000, vol. 10, no. 2, pp. 427–469.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dellnitz, M., Junge, O., Koon, W.S., Lekien, F., Lo, M.W., Marsden, J.E., Padberg, K., Preis, R., Ross, Sh. D., and Thiere, B, Transport in Dynamical Astronomy and Multibody Problems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2005, vol. 15, no. 3, pp. 699–727.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zotos, E. E, Escape Dynamics and Fractal Basins Boundaries in the Three-Dimensional Earth–Moon System, Astrophys. Space Sci., 2016, vol. 361, no. 3, Art. 94, 23 pp.

    Article  MathSciNet  Google Scholar 

  11. Zotos, E. E, Fractal Basin Boundaries and Escape Dynamics in a Multiwell Potential, Nonlinear Dynam., 2016, vol. 85, no. 3, pp. 1613–1633.

    Article  MathSciNet  Google Scholar 

  12. McRobie, F. A. and Thompson, J. M. T, Lobe Dynamics and the Escape from a Potential Well, Proc. Roy. Soc. London Ser. A, 1991, vol. 435, no. 1895, pp. 659–672.

    Article  MathSciNet  MATH  Google Scholar 

  13. Martens, C. C., Davis, M. J., and Ezra, G. S, Local Frequency Analysis of Chaotic Motion in Multidimensional Systems: Energy Transport and Bottlenecks in Planar OCS, Chem. Phys. Lett., 1987, vol. 142, no. 6, pp. 519–528.

    Article  Google Scholar 

  14. Toda, M, Crisis in Chaotic Scattering of a Highly Excited van der Waals Complex, Phys. Rev. Lett., 1995, vol. 74, no. 14, pp. 2670–2673.

    Article  Google Scholar 

  15. Aref, H, Stirring by Chaotic Advection, J. Fluid Mech., 1984, vol. 143, pp. 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  16. Aref, H. and Balachandar, S, Chaotic Advection in a Stokes Flow, Phys. Fluids, 1986, vol. 29, no. 11, pp. 3515–3521.

    Article  MathSciNet  MATH  Google Scholar 

  17. Duan, J. and Wiggins, S, Lagrangian Transport and Chaos in the Near Wake of the Flow around an Obstacle: A Numerical Implementation of Lobe Dynamics, Nonlinear Proc. Geophys., 1999, vol. 4, no. 3, pp. 125–136.

    Article  Google Scholar 

  18. Samelson, R.M. and Wiggins, S., Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach, Interdiscip. Appl. Math., vol. 31, New York: Springer, 2006.

  19. Rom-Kedar, V. and Wiggins, S, Transport in Two-Dimensional Maps, Arch. Rational Mech. Anal., 1990, vol. 109, no. 3, pp. 239–298.

    Article  MathSciNet  MATH  Google Scholar 

  20. Mackay, R. S., Meiss, J. D., and Percival, I.C, Transport in Hamiltonian Systems, Phys. D, 1984, vol. 13, nos. 1–2, pp. 55–81.

    Article  MathSciNet  MATH  Google Scholar 

  21. Wiggins, S., Chaotic Transport in Dynamical Systems, Interdiscip. Appl. Math., vol. 2, New York: Springer, 1992.

    Book  Google Scholar 

  22. Rom-Kedar, V., Transport in a Class of n-D.o.F. Systems, in Hamiltonian Systems with Three or More Degrees of Freedom: Proc. of the NATO Advanced Study Institute (S’Agaró, 1995), C. Simó (Ed.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, Dordrecht: Kluwer,1999, pp. 538–543.

    Chapter  Google Scholar 

  23. Sandstede, B., Balasuriya, S., Jones, Ch.K.R.T., and Miller, P, Melnikov Theory for Finite-Time Vector Fields, Nonlinearity, 2000, vol. 13, no. 4, pp. 1357–1377.

    Article  MathSciNet  MATH  Google Scholar 

  24. Balasuriya, S, Approach for Maximizing Chaotic Mixing in Microfluidic Devices, Phys. Fluids, 2005, vol. 17, no. 11, 118103, 4 pp.

    Article  MathSciNet  MATH  Google Scholar 

  25. Balasuriya, S., Cross-Separatrix Flux in Time-Aperiodic and Time-Impulsive Flows, Nonlinearity, 2006, vol. 19, no. 12, pp. 2775–2795.

    Article  MathSciNet  MATH  Google Scholar 

  26. Balasuriya, S., Froyland, G., and Santitissadeekorn, N, Absolute Flux Optimising Curves of Flows on a Surface, J. Math. Anal. Appl., 2014, vol. 409, no. 1, pp. 119–139.

    Article  MathSciNet  MATH  Google Scholar 

  27. Mitchell, K. A., Handley, J. P., Tighe, B., Delos, J.B., and Knudson, S.K, Geometry and Topology of Escape: 1. Epistrophes, Chaos, 2003, vol. 13, no. 3, pp. 880–891.

    Article  MathSciNet  MATH  Google Scholar 

  28. Mitchell, K. A., Handley, J.P., Delos, J. B., and Knudson, S.K, Geometry and Topology of Escape: 2. Homotopic Lobe Dynamics, Chaos, 2003, vol. 13, no. 3, pp. 892–902.

    Article  MathSciNet  MATH  Google Scholar 

  29. Mitchell, K. A. and Delos, J.B., A New Topological Technique for Characterizing Homoclinic Tangles, Phys. D, 2006, vol. 221, no. 2, pp. 170–187.

    Article  MathSciNet  MATH  Google Scholar 

  30. Shamos, M. I. and Hoey, D., Geometric Intersection Problems, in Proc. of the 17th Annual Symposium on Foundations of Computer Science (SFCS’76), Washington,D.C.: IEEE Computer Society,1976, pp. 208–215.

    Chapter  Google Scholar 

  31. O’Rourke, J., Computational Geometry in C, 2nd ed., Cambridge: Cambridge Univ. Press, 1998.

    Book  MATH  Google Scholar 

  32. Koon, W. S., Marsden, J. E., Ross, Sh. D., Lo, M., and Scheeres, D. J, Geometric Mechanics and the Dynamics of Asteroid Pairs, Ann. N. Y. Acad. Sci., 2004, vol. 1017, pp. 11–38.

    Article  Google Scholar 

  33. Koon, W. S., Lo, M.W., Marsden, J. E., and Ross, Sh. D., Dynamical Systems, the Three-Body Problem and Space Mission Design, Marsden Books, 2011.

    Google Scholar 

  34. Naik, Sh. and Ross, Sh. D, Geometry of Escaping Dynamics in Nonlinear Ship Motion, Commun. Nonlinear Sci. Numer. Simul., 2017, vol. 47, pp. 48–70.

    Article  MathSciNet  Google Scholar 

  35. Mancho, A.M., Small, D., Wiggins, S., and Ide, K, Computation of Stable and Unstable Manifolds of Hyperbolic Trajectories in Two-Dimensional, Aperiodically Time-Dependent Vector Fields, Phys. D, 2003, vol. 182, nos. 3–4, pp. 188–222.

    MATH  Google Scholar 

  36. Thompson, J.M.T. and De Souza, J. R, Suppression of Escape by Resonant Modal Interactions: In Shell Vibration and Heave-Roll Capsize, Proc. R. Soc. A, 1996, vol. 452, no. 1954, pp. 2527–2550.

    Article  MATH  Google Scholar 

  37. Sepulveda, M.A. and Heller, E. J, Semiclassical Calculation and Analysis of Dynamical Systems with Mixed Phase Space, J. Chem. Phys., 1994, vol. 101, no. 9, pp. 8004–8015.

    Article  Google Scholar 

  38. Babyuk, D., Wyatt, R. E., and Frederick, J. H, Hydrodynamic Analysis of Dynamical Tunneling, J. Chem. Phys., 2003, vol. 119, no. 13, pp. 6482–6488.

    Article  Google Scholar 

  39. Barrio, R., Blesa, F., and Serrano, S, Bifurcations and Safe Regions in Open Hamiltonians, New J. Phys., 2009, vol. 11, no. 5, 053004, 15 pp.

    Article  Google Scholar 

  40. Jaffé, C., Ross, Sh. D., Lo, M. W., Marsden, J.E., Farrelly, D., and Uzer, T, Statistical Theory of Asteroid Escape Rates, Phys. Rev. Lett., 2002, vol. 89, no. 1, 011101, 4 pp.

    Article  Google Scholar 

  41. Jaffé, C., Farrelly, D., and Uzer, T, Transition State in Atomic Physics, Phys. Rev. A, 1999, vol. 60, no. 5, pp. 3833–3850.

    Article  Google Scholar 

  42. Dritschel, D. G, Contour Surgery: A Topological Reconnection Scheme for Extended Integrations Using Contour Dynamics, J. Comput. Phys., 1988, vol. 77, no. 1, pp. 240–266.

    Article  MathSciNet  MATH  Google Scholar 

  43. Maelfeyt, B., Smith, S. A., and Mitchell, K. A, Using Invariant Manifolds to Construct Symbolic Dynamics for Three-Dimensional Volume-Preserving Maps, SIAM J. Appl. Dyn. Syst., 2017, vol. 16, no. 1, pp. 729–769.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibabrat Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, S., Lekien, F. & Ross, S.D. Computational method for phase space transport with applications to lobe dynamics and rate of escape. Regul. Chaot. Dyn. 22, 272–297 (2017). https://doi.org/10.1134/S1560354717030078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354717030078

MSC2010 numbers

Keywords

Navigation