Skip to main content
Log in

Bistability of rotational modes in a system of coupled pendulums

  • Nonlinear Dynamics & Mobile Robotics
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The main goal of this research is to examine any peculiarities and special modes observed in the dynamics of a system of two nonlinearly coupled pendulums. In addition to steady states, an in-phase rotation limit cycle is proved to exist in the system with both damping and constant external force. This rotation mode is numerically shown to become unstable for certain values of the coupling strength. We also present an asymptotic theory developed for an infinitely small dissipation, which explains why the in-phase rotation limit cycle loses its stability. Boundaries of the instability domain mentioned above are found analytically. As a result of numerical studies, a whole range of the coupling parameter values is found for the case where the system has more than one rotation limit cycle. There exist not only a stable in-phase cycle, but also two out-of phase ones: a stable rotation limit cycle and an unstable one. Bistability of the limit periodic mode is, therefore, established for the system of two nonlinearly coupled pendulums. Bifurcations that lead to the appearance and disappearance of the out-ofphase limit regimes are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, New York: Cambridge Univ. Press, 2001.

    Book  MATH  Google Scholar 

  2. Braun, O.M. and Kivshar, Yu. S., The Frenkel–Kontorova Model: Concepts, Methods, and Applications, Berlin: Springer, 2004.

    Book  MATH  Google Scholar 

  3. Yakushevich, L.V., Nonlinear Physics of DNA, 2nd ed., Weinheim: Wiley-VCH, 2004.

    Book  MATH  Google Scholar 

  4. Afraimovich, V. S., Nekorkin, V. I., Osipov, G. V., and Shalfeev, V.D., Stability, Structures and Chaos in Nonlinear Synchronization Network, Singapore: World Sci., 1994.

    MATH  Google Scholar 

  5. Leeman, C., Lereh, P., Racine, G. A., and Martinoli, P., Vortex Dynamics and Phase Transitions in a Two-Dimensional Array of Josephson Junctions, Phys. Rev. Lett., 1986, vol. 56, no. 12, pp. 1291–1294.

    Article  Google Scholar 

  6. Ryu, S., Yu, W., and Stroud, D., Dynamics of an Underdamped Josephson-Junction Ladde, Phys. Rev. E, 1996, vol. 53, no. 3, pp. 2190–2195.

    Article  Google Scholar 

  7. Kim, B. J., Kim, S., and Lee, S. J., Defect Motions and Smearing of Shapiro Steps in Josephson-Junction Ladders under Magnetic Frustration, Phys. Rev. B, 1995, vol. 51, no. 13, pp. 8462–8466.

    Article  Google Scholar 

  8. Kim, J., Choe, W.G., Kim, S., and Lee, H. J., Dynamics of Josephson-Junction Ladders, Phys. Rev. B, 1994, vol. 49, no. 1, pp. 459–464.

    Article  Google Scholar 

  9. Denniston, C. and Tang, C., Phases of Josephson Junction Ladders, Phys. Rev. Lett., 1995, vol. 75, no. 21, pp. 3930–3933.

    Article  Google Scholar 

  10. Qjan, M. and Weng, J.-Z., Transitions in Two Sinusoidally Coupled Josephson Junction Rotators, Ann. Phys., 2008, vol. 323, no. 8, pp. 1956–1962.

    Article  Google Scholar 

  11. Fishman, R. S. and Stroud, D., Role of Long-Range Coulomb Interactions in Granular Superconductors, Phys. Rev. B, 1988, vol. 38, no. 1, pp. 290–296.

    Article  Google Scholar 

  12. Yakushevich, L. V., Gapa, S., and Awrejcewicz, J., Mechanical Analog of the DNA Base Pair Oscillations, in Dynamical Systems. Theory and Applications, J. Awrejcewicz, M. Kazmierczak, P. Olejnik, J. Mrozowski (Eds.), Lódz: Left Grupa, 2009, pp. 879–886.

    Google Scholar 

  13. Yakushevich, L. V., Biomechanics of DNA: Rotational Oscillations of Bases, J. Nonlinear Math. Phys., 2011, vol. 18, supp. 02, pp. 449–461.

    Article  MathSciNet  Google Scholar 

  14. Avreytsevich, J., Mlynarska, S., and Yakushevich, L. V., Non-Linear Oscillations in DNA Base Pairs, J. Appl. Math. Mech., 2013, vol. 77, no. 4, pp. 392–400; see also: Prikl. Mat. Mekh., 2013, vol. 77, no. 4, pp. 545–556.

    Article  MathSciNet  Google Scholar 

  15. Krueger, A., Protozanova, E., and Frank-Kamenetskii, M., Sequence-Dependent Basepair Opening in DNA Double Helix, Biophys. J., 2006, vol. 90, no. 9, pp. 3091–3099.

    Article  Google Scholar 

  16. Markeev, A.P., Nonlinear Oscillations of Sympathetic Pendulums, Nelin. Dinam., 2010, vol. 6, no. 3, pp. 605–622 (Russian).

    Article  Google Scholar 

  17. Markeev, A.P., A Motion of Connected Pendulums, Nelin. Dinam., 2013, vol. 9, no. 1, pp. 27–38 (Russian).

    Article  MathSciNet  Google Scholar 

  18. Markeev, A.P., On the Stability of Nonlinear Vibrations of Coupled Pendulums, Mech. Solids, 2013, vol. 48, no. 4, pp. 370–379; see also: Izv. Akad. Nauk. Mekh. Tverd. Tela, 2013, no. 4, pp. 4–20.

    Article  MathSciNet  Google Scholar 

  19. Takeno, Sh. and Peyrard, M., Nonlinear Modes in Coupled Rotator Models, Phys. D, 1996, vol. 92, no. 3–4, pp. 140–163.

    Article  MATH  Google Scholar 

  20. Zhang, F., Kink Shape Modes and Resonant Dynamics in Sine-Lattices, Phys. D, 1997, vol. 110, nos. 1–2, pp. 51–61.

    Article  MATH  Google Scholar 

  21. Kosterlitz, J. M. and Thouless, D. J., Ordering, Metastability and Phase Transitions in Two-Dimensional Systems, J. Phys. C, 1973, vol. 6, no. 7, pp. 1181–1203.

    Google Scholar 

  22. Antoni, M. and Ruffo, S., Clustering and Relaxation in Hamiltonian Long-Range Dynamics, Phys. Rev. E, 1995, vol. 52, no. 3, pp. 2361–2374.

    Article  Google Scholar 

  23. Wang, X.Y. and Taylor, P.L., Devil’s Staircase, Critical Thickness, and Propagating Fingers in Antiferroelectric Liquid Crystals, Phys. Rev. Lett., 1996, vol. 76, no. 4, pp. 640–643.

    Article  Google Scholar 

  24. Fillaux, F. and Carlile, C. J., Inelastic-Neutron-Scattering Study of Methyl Tunneling and the Quantum Sine-Gordon Breather in Isotopic Mixtures of 4-Methyl-Pyridine at Low Temperature, Phys. Rev. B, 1990, vol. 42, no. 10, pp. 5990–6006.

    Article  Google Scholar 

  25. Fillaux, F., Carlile, C. J., and Kearley, G. J., Inelastic-Neutron-Scattering Study at Low Temperature of the Quantum Sine-Gordon Breather in 4-Methyl-Pyridine with Partially Deuterated Methyl Groups, Phys. Rev. B, 1991, vol. 44, no. 22, pp. 12280–12293.

    Article  Google Scholar 

  26. Zhang, F., Collins, M. A., and Kivshar, Yu. S., Kinks and Conformational Defects in Nonlinear Chains, Phys. Rev. E, 1995, vol. 51, no. 4, pp. 3774–3777.

    Article  Google Scholar 

  27. Acebrón, J.A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F., and Spigler, R., The Kuramoto Model: A Simple Paradigm for Synchronization Phenomena, Rev. Mod. Phys., 2005, vol. 77, no. 1, pp. 137–185.

    Article  Google Scholar 

  28. Tanaka, H.-A., Lichtenberg, A. J., and Oishi, Sh., First Order Phase Transition Resulting from Finite Inertia in Coupled Oscillator Systems, Phys. Rev. Lett., 1997, vol. 78, no. 11, pp. 2104–2107.

  29. Tanaka, H.-A., Lichtenberg, A. J., and Oishi, Sh., Self-Synchronization of Coupled Oscillators with Hysteretic Responses, Phys. D, 1997, vol. 100, no. 3–4, pp. 279–300.

    Article  MATH  Google Scholar 

  30. Rohden, M., Sorge, A., Timme, M., and Witthaut, D., Self-Organized Synchronization in Decentralized Power Grids, Phys. Rev. Lett., 2012, vol. 109, no. 6, 064101, 5 pp.

    Article  Google Scholar 

  31. Rohden, M., Sorge, A., Witthaut, D., and Timme, M., Impact of Network Topology on Synchrony of Oscillatory Power Grids, Chaos, 2014, vol. 24, no. 1. 013123, 8 pp.

    Article  MathSciNet  Google Scholar 

  32. Olmi, S., Navas, A., Boccaletti, S., and Torcini, A., Hysteretic Transitions in the Kuramoto Model with Inertia, Phys. Rev. E, 2014, vol. 90, no. 4, 042905, 16 pp.

    Article  Google Scholar 

  33. Olmi, S., Martens, E. A., Thutupalli, S., and Torcini, A., Intermittent Chaotic Chimeras for Coupled Rotators, Phys. Rev. E, 2015, vol. 92, no. 3. 030901, 6 pp.

    Article  Google Scholar 

  34. Ha, S.-Y., Kim, Y., and Li, Z., Large-Time Dynamics of Kuramoto Oscillators under the Effects of Inertia and Frustration, SIAM J. Appl. Dyn. Syst., 2014, vol. 13, no. 1, pp. 466–492.

    Article  MathSciNet  MATH  Google Scholar 

  35. Gupta, S., Campa, Ph., and Ruffo, S., Nonequilibrium First-Order Phase Transition in Coupled Oscillator Systems with Inertia and Noise, Phys. Rev. E, 2014, vol. 89, no. 2. 022123, 13 pp.

    Article  Google Scholar 

  36. Komarov, M., Gupta, S., and Pikovsky, A., Synchronization Transitions in Globally Coupled Rotors in the Presence of Noise and Inertia: Exact Results, Europhys. Lett., 2014, vol. 106, no. 4, 40003, 6 pp.

    Article  Google Scholar 

  37. Ji, P., Peron, T.K., Menck, P. J., Rodrigues, F. A., and Kurths, J., Cluster Explosive Synchronization in Complex Networks, Phys. Rev. Lett., 2013, vol. 110, no. 21, 218701, 5 pp.

    Article  Google Scholar 

  38. Ji, P., Peron, T.K., Menck, P. J., Rodrigues, F. A., and Kurths, J., Analysis of Cluster Explosive Synchronization in Complex Networks, Phys. Rev. E, 2014, vol. 90, no. 6, 062810, 10 pp.

    Article  Google Scholar 

  39. Peron, T.K., Ji, P., Rodrigues, F.A., and Kurths, J., Effects of Assortative Mixing in the Second-Order Kuramoto Model, Phys. Rev. E, 2015, vol. 91, no. 5, 052805, 6 pp.

    Article  MathSciNet  Google Scholar 

  40. Goldstein, H., Poole Ch.P., and Safko, J.L., Classical Mechanics, 3rd ed., Reading, Mass.: Addison-Wesley, 2001.

    MATH  Google Scholar 

  41. Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: Vol. 1. Mechanics, 3rd ed., Oxford: Pergamon, 1976.

    Google Scholar 

  42. Andronov, A.A., Vitt, A. A., and Khaikin, S.E., Theory of Oscillators, Oxford: Pergamon Press, 1966.

    MATH  Google Scholar 

  43. Belykh, V.N., Pedersen, N. F., and Soerensen, O.H., Shunted-Josephson-Junction Model: 1. The Autonomous Case, Phys. Rev. B, 1977, vol. 16, no. 11, pp. 4853–4859.

    Article  Google Scholar 

  44. Tricomi, F., Integrazioni di un’ equazione differenziale presentatasi in elettrotecnica, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, 1933, vol. 2, no. 1, pp. 1–20.

    MathSciNet  MATH  Google Scholar 

  45. Yakubovich, V.A. and Starzhinskii, V.M., Parametric Resonance in Linear Systems, Moscow: Nauka, 1987 (Russian).

    Google Scholar 

  46. Bogolubov, N.N. and Mitropolskiy, Yu.A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Moscow: Nauka, 1974 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev A. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, L.A., Kryukov, A.K., Osipov, G.V. et al. Bistability of rotational modes in a system of coupled pendulums. Regul. Chaot. Dyn. 21, 849–861 (2016). https://doi.org/10.1134/S156035471607008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156035471607008X

MSC2010 numbers

Keywords

Navigation