Skip to main content
Log in

Historical and critical review of the development of nonholonomic mechanics: the classical period

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this historical review we describe in detail the main stages of the development of nonholonomic mechanics starting from the work of Earnshaw and Ferrers to the monograph of Yu. I.Neimark and N.A. Fufaev. In the appendix to this review we discuss the d’Alembert–Lagrange principle in nonholonomic mechanics and permutation relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albouy, A., There Is a Projective Dynamics, Eur. Math. Soc. Newsl., 2013, no. 89, pp. 37–43.

    MathSciNet  MATH  Google Scholar 

  2. Appell, P., Traité de mécanique rationelle: Vol. 2, Paris: Gauthier-Villars, 1896.

    Google Scholar 

  3. Appell P., Exemple de mouvement d’un assujetti, a une exprimée par une relation non linéaire entre les composantes de la vitesse, Rendiconti del circolo matematico di Palermo, 1911, vol. 32, pp. 48–50.

    Article  MATH  Google Scholar 

  4. Arnol’d, V. I. and Givental’, A. B., Symplectic Geometry, in Dynamical Systems: Vol. 4, V. I. Arnold, S.P. Novikov (Eds.), Encyclopaedia Math. Sci., vol. 4, Berlin: Springer, 2001, pp. 1–138.

    Google Scholar 

  5. Arnol’d, V. I., Kozlov, V.V., and Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.

    Google Scholar 

  6. Béghin, H., Sur les conditions d’application des équations de Lagrange à un système non holonome, Bull. Soc. Math. France, 1929, vol. 57, pp. 118–124.

    MathSciNet  MATH  Google Scholar 

  7. Bilimovitch, A.D., La pendule nonholonome, Mat. Sb., 1914, vol. 29, no. 2, pp. 234–240 (Russian).

    Google Scholar 

  8. Bizyaev, I.A., Borisov, A.V., and Kazakov, A.O., Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 605–626.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., The Hojman Construction and Hamiltonization of Nonholonomic Systems, SIGMA Symmetry Integrability Geom. Methods Appl., 2016, vol. 12, Paper 012, 19 pp.

  10. Blackall, C. J., On Volume Integral Invariants of Non-Holonomic Dynamical Systems, Amer. J. Math., 1941, vol. 63, pp. 155–168.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bloch, A., Nonholonomic Mechanics and Control, New York: Springer, 2003.

    Book  Google Scholar 

  12. Borisov, A.V., Kazakov, A.O., and Sataev, I.R., The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 718–733.

    Article  MathSciNet  MATH  Google Scholar 

  13. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., On the Hadamard–Hamel Problem and the Dynamics of Wheeled Vehicles, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 752–766.

    Article  MathSciNet  MATH  Google Scholar 

  14. Borisov, A. V. and Mamaev, I. S., The Rolling Motion of a Rigid Body on a Plane and a Sphere: Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 177–200.

    Article  MathSciNet  MATH  Google Scholar 

  15. Borisov, A. V. and Mamaev, I. S., On the History of the Development of the Nonholonomic Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 1, pp. 43–47.

    Article  MathSciNet  MATH  Google Scholar 

  16. Borisov, A.V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.

    Article  MathSciNet  MATH  Google Scholar 

  17. Borisov, A. V. and Mamaev, I. S., Symmetries and Reduction in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.

    Article  MathSciNet  MATH  Google Scholar 

  18. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.

    Article  MathSciNet  MATH  Google Scholar 

  19. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Jacobi Integral in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 383–400.

    Article  MathSciNet  MATH  Google Scholar 

  20. Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Dynamics of Rolling Disk, Regul. Chaotic Dyn., 2003, vol. 8, no. 2, pp. 201–212.

    Article  MathSciNet  MATH  Google Scholar 

  21. Borisov, A. V., Mamaev, I. S., Kilin, A.A., and Bizyaev, I.A., Qualitative Analysis of the Dynamics of a Wheeled Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 739–751.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bottema, O., On the Small Vibrations of Nonholonomic Systems, Indag. Math., 1949, vol. 11, pp. 296–298.

    MathSciNet  Google Scholar 

  23. Bottema, O., Die Bewegung eines einfachen Wagenmodells, Z. Angew. Math. Mech., 1964, vol. 44, no. 12, pp. 585–593.

    Article  MATH  Google Scholar 

  24. Bourlet, C., Étude théorique sur la bicyclette: 1, Bull. Soc. Math. France, 1899, vol. 27, pp. 47–67.

    MathSciNet  MATH  Google Scholar 

  25. Boussinesq, J., Aperçu sur la théorie de la bicyclette, J. Math. Pure Appl., 1899, vol. 5, pp. 117–135.

    MATH  Google Scholar 

  26. Boussinesq, J., Complément à une étude récente concernant la théorie de la bicyclette: influence, sur l’équilibre, des mouvements latéraux spontanés du cavalier, J. Math. Pure Appl., 1899, vol. 5, pp. 217–232.

    MATH  Google Scholar 

  27. Bravo-Doddoli, A. and García-Naranjo, L.C., The Dynamics of an Articulated n-Trailer Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 497–517.

    Article  MathSciNet  MATH  Google Scholar 

  28. Brendelev, V. N., On Commutation Relations in Nonholonomic Mechanics, Mosc. Univ. Mech. Bull., 1978, vol. 33, nos. 5–6, pp. 30–35; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1978, no. 6, pp. 47–54.

    MathSciNet  MATH  Google Scholar 

  29. Brill, A., Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Leipzig: Teubner, 1909.

    MATH  Google Scholar 

  30. Capon, R. S., Hamilton’s Principle in Relation to Nonholonomic Mechanical Systems, Quart. J. Mech. Appl. Math., 1952, vol. 5, no. 4, pp. 472–480.

    Article  MathSciNet  MATH  Google Scholar 

  31. Carathéodory, C., Der Schlitten, Z. Angew. Math. Mech., 1933, vol. 13, no. 2, pp. 71–76.

    Article  Google Scholar 

  32. Cartan, É., Lessons on Integral Invariants, Paris: Hermann, 1922.

    Google Scholar 

  33. Carvallo, E., Théorie du mouvement du monocycle et de la bicyclette, Paris: Gauthier-Villars, 1899.

    MATH  Google Scholar 

  34. Chaplygin, S.A., On a Motion of a Heavy Body of Revolution on a Horizontal Plane, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 119–130.

    Article  MathSciNet  MATH  Google Scholar 

  35. Chaplygin, S. A., On a ball’s Rolling on a Horizontal Plane, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 131–148; see also: Math. Sb., 1903, vol. 24, no. 1, pp. 139–168.

    Article  MathSciNet  MATH  Google Scholar 

  36. Chaplygin, S. A., On the Theory of Motion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  37. Chetaev, N. G., On the Gauss Principle, Izv. Kazan. Fiz. Mat. Obs., 1932, pp. 323–326 (Russian).

    Google Scholar 

  38. Chow, W. L., Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 1940/1941, vol. 117, pp. 98–105.

    Article  MATH  Google Scholar 

  39. Crescini, E., Sur moto di una sfera che rotola su di un plano fisso, Rendiconti Accad. dei Lincei, 1889, vol. 5, pp. 204–209.

    MATH  Google Scholar 

  40. Dautheville, S., Sur les systèmes non holonomes, Bull. Soc. Math. France, 1909, vol. 37, pp. 120–132.

    MathSciNet  MATH  Google Scholar 

  41. Delassus, E., Sur la réalisation matérielle des liaisons, C. R. Acad. Sci. Paris, 1911, vol. 152, pp. 1739–1743.

    MATH  Google Scholar 

  42. Duistermaat, J. J., Chaplygin’s Sphere, arXiv:math/0409019v1 (2004).

    Google Scholar 

  43. Earnshaw, S., Dynamics, or An Elementary Treatise on Motion, 3rd ed., Cambridge: Deighton, 1844.

    Google Scholar 

  44. Eden, R. J., The Hamiltonian Dynamics of Non-Holonomic Systems, Proc. Roy. Soc. London. Ser. A, 1951, vol. 205, no. 1083, pp. 564–583.

    Article  MathSciNet  MATH  Google Scholar 

  45. Efimov, M. I., On Caplygin’s Equations of Nonholonomic Mechanical Systems, Prikl. Mat. Mekh., 1953, vol. 17, no. 6, pp. 748–750 (Russian).

    MathSciNet  Google Scholar 

  46. Ehlers, K., Koiller, J., Montgomery, R., and Rios, P.M., Nonholonomic Systems via Moving Frames: Cartan Equivalence and Chaplygin Hamiltonization, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., vol. 232, Boston,Mass.: Birkhäuser, 2005, pp. 75–120.

    Article  MathSciNet  MATH  Google Scholar 

  47. Essén, H., On the Geometry of Nonholonomic Dynamics, Trans. ASME J. Appl. Mech., 1994, vol. 61, no. 3, pp. 689–694.

    Article  MathSciNet  MATH  Google Scholar 

  48. Ferrers, N.M., Extension of Lagrange’s Equations, Quart. J. Pure Appl. Math., 1872, vol. 12, no. 45, pp. 1–5.

    MATH  Google Scholar 

  49. Frobenius, G., Über das Pfaffsche Problem, J. Reine Angew. Math., 1877, vol. 1877, no. 82, pp. 230–315.

    MathSciNet  Google Scholar 

  50. Gibbs, J.W., On the Fundamental Formulae of Dynamics, Amer. J. Math., 1879, vol. 2, no. 1, pp. 49–64.

    Article  MathSciNet  MATH  Google Scholar 

  51. Hadamard, J., Sur les mouvements de roulement, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, sér. 4, 1895, vol. 5, pp. 397–417.

    MATH  Google Scholar 

  52. Halmos, P.R., How ToWrite Mathematical Texts, Uspekhi Mat. Nauk, 1971, vol. 26, no. 5(161), pp. 243–269 (Russian).

    MathSciNet  Google Scholar 

  53. Hamel, G., Die Lagrange-Eulerschen Gleichungen der Mechanik, Z. Math. u. Phys., 1904, vol. 50, pp. 1–57.

    MATH  Google Scholar 

  54. Hamel, G., Theoretische Mechanik: Eine einheitliche Einführung in die gesamte Mechanik, 2nd ed., Berlin: Springer, 1978.

    MATH  Google Scholar 

  55. Hawkins, Th., Frobenius, Cartan, and the Problem of Pfaff, Arch. Hist. Exact Sci., 2005, vol. 59, no. 4, pp. 381–436.

    Article  MathSciNet  MATH  Google Scholar 

  56. Hertz, H., Gesammelte Werke: Vol. 3. Die Prinzipien der Mechanik, Leipzig: Barth, 1894.

    Google Scholar 

  57. Holm, D.D., Geometric Mechanics: P. 1. Dynamics and Symmetry, 2nd ed., London: Imperial College Press, 2011.

    Book  MATH  Google Scholar 

  58. Holm, D.D., Geometric Mechanics: P. 2. Rotating, Translating and Rolling, 2nd ed., London: Imperial College Press, 2011.

    Book  MATH  Google Scholar 

  59. Isénoff, I., Sur les équations générales du mouvement des systèmes matériels non holonomes, J. Math. Pures Appl., sér. 8, 1920, vol. 3, pp. 245–264.

    Google Scholar 

  60. Jacobi, C.G. J., Vorlesungen über Dynamik, 2nd ed., Berlin: Reimer, 1884.

    MATH  Google Scholar 

  61. Karapetyan, A.V. and Rumyantsev, V.V., Stability of Conservative and Dissipative Systems, Itogi Nauki Tekh. Ser. Obshch. Mekh., vol. 6, Moscow: VINITI, 1983 (Russian).

  62. Koiller, J., Reduction of Some Classical Non-Holonomic Systems with Symmetry, Arch. Rational Mech. Anal., 1992, vol. 118, no. 2, pp. 113–148.

    Article  MathSciNet  MATH  Google Scholar 

  63. Kooijman, J.D.G., Meijaard, J.P., Papadopoulos, J.M., Ruina, A., and Schwab, A. L., A Bicycle Can Be Self-Stable without Gyroscopic or Caster Effects (Supplementary Material Available Online), Science, 2011, vol. 332, no. 6027, pp. 339–342.

    Article  MathSciNet  MATH  Google Scholar 

  64. Korteweg, D., Extrait d’une lettre à M. Appel, Rendiconti del circolo matematico di Palermo, 1900, vol. 14, pp. 7–8.

    Article  MATH  Google Scholar 

  65. Korteweg, D., Über eine ziemlich verbrietete unrichtige Behandlungswiese eines Problemes der rolleden Bewegung und insbesondere über kleine rollende Schwingungen um eine Gleichgewichtslage, Nieuw Archief voor Wiskunde, 1899, vol. 4, pp. 130–155.

    Google Scholar 

  66. Kozlov, V.V., The Dynamics of Systems with Servoconstaints: 1, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 205–224.

    Article  MathSciNet  Google Scholar 

  67. Kozlov, V.V., The Dynamics of Systems with Servoconstaints: 2, Regul. Chaotic Dyn., 2015, vol. 20, no. 4, pp. 401–427.

    Article  MathSciNet  Google Scholar 

  68. Kozlov, V.V., Euler and Mathematical Methods in Mechanics: On the 300th Anniversary of the Birth of Leonhard Euler, Russian Math. Surveys, 2007, vol. 62, no. 4, pp. 639–661; see also: Uspekhi Mat. Nauk, 2007, vol. 62, no. 4(376), pp. 3–26.

    Article  MathSciNet  MATH  Google Scholar 

  69. Kozlov, V.V., On the Theory of Integration of the Equations of Nonholonomic Mechanics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 191–176.

    Article  Google Scholar 

  70. Kozlov, V.V., On Equilibria of Nonholonomic Systems, Mosc. Univ. Mech. Bull., 1994, vol. 49, nos. 2–3, pp. 22–29; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1994, no. 3, pp. 74–79.

    MATH  Google Scholar 

  71. Kozlov, V.V., Stability of Equilibria of Nonholonomic Systems, Sov. Math. Dokl., 1986, vol. 33, pp. 654–656; see also: Dokl. Akad. Nauk SSSR, 1986, vol. 288, no. 2, pp. 289–291.

    MATH  Google Scholar 

  72. Kozlov, V.V., Realization of Nonintegrable Constraints in Classical Mechanics, Sov. Phys. Dokl., 1983, vol. 28, pp. 735–737; see also: Dokl. Akad. Nauk SSSR, 1983, vol. 272, no. 3, pp. 550–554.

    MATH  Google Scholar 

  73. Lagrange, J.L., Méchanique analytique, Sceaux: Gabay, 1989.

    Google Scholar 

  74. Laurent-Gengoux, C., Pichereau, A., and Vanhaecke, P., Poisson Structures, Grundlehren Math. Wiss., vol. 347. Heidelberg: Springer, 2013.

  75. de León, M., A Historical Review on Nonholomic Mechanics, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 2012, vol. 106, no. 1, pp. 191–224.

    Article  MathSciNet  MATH  Google Scholar 

  76. Lie, S., Theorie der Transformationsgruppen: Vol. 1, Leipzig: Teubner, 1888.

    Google Scholar 

  77. Lie, S., Theorie der Transformationsgruppen: Vol. 2, Leipzig: Teubner, 1890.

    MATH  Google Scholar 

  78. Lie, S., Theorie der Transformationsgruppen: Vol. 3, Leipzig: Teubner, 1893.

    Google Scholar 

  79. Lindelöf, E., Sur le mouvement d’un corps de révolution roulant sur un plan horizontal, Acta Societ. Scient. Fennicae, 1895, vol. 20, no. 10, 18 pp.

    Google Scholar 

  80. Llibre, J., Ramirez, R., and Sadovskaia, N., A New Approach to the Vakonomic Mechanics, Nonlinear Dynam., 2014, vol. 78, no. 3, pp. 2219–2247.

    Article  MathSciNet  MATH  Google Scholar 

  81. Maggi, G., Di alcune nuove forme delle equazioni della dinamica, applicabili ai sistemi anolonomi, Atti della R. Acc. nazionale dei Lincei, 1901, vol. 5, pp. 287–292.

    MATH  Google Scholar 

  82. Maruskin, J.M., Bloch, A. M., Marsden, J.E., and Zenkov, D. V., A Fiber Bundle Approach to the Transpositional Relations in Nonholonomic Mechanics, J. Nonlinear Sci., 2012, vol. 22, no. 4, pp. 431–461.

    Article  MathSciNet  MATH  Google Scholar 

  83. Meijaard, J.P., Papadopoulos, J.M., Ruina, A., and Schwab, A. L., Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2007, vol. 463, no. 2084, pp. 1955–1982.

    Article  MathSciNet  MATH  Google Scholar 

  84. Molenbrock, P., Over de zuiver rollende beweging van een lichaam over een willekeurig oppervlak, Nieuw Archief voor Wiskunde, 1890, vol. 17, pp. 130–157.

    Google Scholar 

  85. Monforte, J.C., Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Math., vol. 1793, Berlin: Springer, 2002.

  86. Moser, J. and Zehnder, E. J., Notes on Dynamical Systems, Courant Lect. Notes Math., vol. 12, Providence,R.I.: AMS, 2005.

  87. Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,R.I.: AMS, 1972.

    MATH  Google Scholar 

  88. Neumann, C. G., Beiträge zur analytischenMechanik: 1, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Classe, 1899, vol. 51, pp. 371–444.

    Google Scholar 

  89. Neumann, C., Über die rollende Bewegung eines Körpers auf einer gegebenen Horizontalebene unter dem Einfluss der Schwere, Math. Ann., 1886, vol. 27, no. 4, pp. 478–501.

    Article  Google Scholar 

  90. Ohsawa, T., Fernandez, O. E., Bloch, A.M., and Zenkov, D.V., Nonholonomic Hamilton — Jacobi Theory via Chaplygin Hamiltonization, J. Geom. Phys., 2011, vol. 61, no. 8, pp. 1263–1291.

    Article  MathSciNet  MATH  Google Scholar 

  91. Pavon, M., Hamilton — Jacobi Equations for Nonholonomic Dynamics, J. Math. Phys., 2005, vol. 46, no. 3, 032902, 8 pp.

    Article  MathSciNet  MATH  Google Scholar 

  92. Poincaré, H., Sur une forme nouvelle des équations de la Mécanique, C. R. Acad. Sci. Paris, 1901, vol. 132, pp. 369–371.

    MATH  Google Scholar 

  93. Poincaré, H., Les idées de Hertz sur la mécanique, Revue Générale des Sciences, 1897, vol. 8, pp. 734–743.

    MATH  Google Scholar 

  94. Posch, H. A., Hoover, W. G., and Vesely, F. J., Canonical Dynamics of the Nosé Oscillator: Stability, Order, and Chaos, Phys. Rev. A(3), 1986, vol. 33, no. 6, pp. 4253–4265.

    Article  MathSciNet  Google Scholar 

  95. Pöschl, Th.M. F., Sur les équations canoniques des systèmes non holonomes, C. R. Acad. Sci. Paris, 1913, vol. 156, pp. 1829–1831.

    MATH  Google Scholar 

  96. Quanjel, J., Les équations générales de la mécanique dans le cas des liaisons non-holonomes, Rendiconti del circolo matematico di Palermo, 1906, vol. 22, no. 1, pp. 263–273.

    Article  MATH  Google Scholar 

  97. Rashevsky, P.K., Any Two Points of a Totally Nonholonomic Space May Be Connected by an Admissible Line, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 1938, vol. 3, no. 2, pp. 83–94 (Russian).

    Google Scholar 

  98. Rocard, Y., L’instabilité en mécanique: Automobiles, avions, ponts suspendus, Paris: Masson, 1954.

    Google Scholar 

  99. Routh, G.R.R., The Motion of a Bicycle, The Messenger of Mathematics, 1899, vol. 28, pp. 151–169.

    Google Scholar 

  100. Routh, E. J., The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies: Being Part II of a Treatise on the Whole Subject, 6th ed., New York: Dover, 1955.

    MATH  Google Scholar 

  101. Rumianstev, V.V., On Stability of Motion of Nonholonomic Systems, J. Appl. Math. Mech., 1967, vol. 31, no. 2, pp. 282–293; see also: Prikl. Mat. Mekh., 1967, vol. 31, no. 2, pp. 260–271.

    Article  Google Scholar 

  102. Rumyantsev, V.V. and Sumbatov, A. S., On the Problem of a Generalization of the Hamilton — Jacobi Method for Nonholonomic Systems, Z. Angew. Math. Mech., 1978, vol. 58, no. 11, pp. 477–481.

    Article  MathSciNet  MATH  Google Scholar 

  103. Schouten, G., Over de rollende beweging van een omwentelingalichaam op een vlak, Verlangen der Konikl. Akad. van Wet. Amsterdam. Proc., 1899, vol. 5, pp. 1–10.

    Google Scholar 

  104. Schouten, J.A., On Non-Holonomic Connexions, Proc. Amsterdam, 1928, vol. 31, pp. 291–299.

    MATH  Google Scholar 

  105. Slesser, G.M., Notes on Rigid Dynamics, Quart. J. Math., 1861, vol. 4, pp. 65–77.

    Google Scholar 

  106. Stückler, B., Über die Differentialgleichungen für die Bewegung eines idealisierten Kraftwagens, Arch. Appl. Mech., 1952, vol. 20, no. 5, pp. 337–356.

    Google Scholar 

  107. Stückler, B., Über die Berechnung der an rollenden Fahrzeugen wirkenden Haftreibungen, Arch. Appl. Mech., 1955, vol. 23, no. 4, pp. 279–287.

    Google Scholar 

  108. Suslov, G. K., Theoretical Mechanics, Moscow: Gostekhizdat, 1946 (Russian).

    Google Scholar 

  109. Suslov, G. K., The Foundations of Analytical Mechanics: Vol. 1, Kiev: Imp. Univ., 1900.

    Google Scholar 

  110. Vagner, V.V., A Geometric Interpretation of Nonholonomic Dynamical Systems, Tr. Semin. Vectorn. Tenzorn. Anal., 1941, no. 5, pp. 301–327 (Russian).

    MathSciNet  MATH  Google Scholar 

  111. Van Dooren, R., Second Form of the Generalized Hamilton — Jacobi Method for Nonholonomic Dynamical Systems, Z. Angew. Math. Phys., 1978, vol. 29, no. 5, pp. 828–834.

    Article  MathSciNet  MATH  Google Scholar 

  112. Vershik, A.M. and Faddeev, L.D., Differential Geometry and Lagrangian Mechanics with Constraints, Soviet Phys. Dokl., 1972, vol. 17, no. 1, pp. 34–36; see also: Dokl. Akad. Nauk, 1972, vol. 202, no. 3, pp. 555–557.

    MATH  Google Scholar 

  113. Vierkandt, A., Über gleitende und rollende Bewegung, Monatsh. Math. Phys., 1892, vol. 3, no. 1, pp. 31–38, 97–116.

    Article  MathSciNet  MATH  Google Scholar 

  114. Volterra, V., Sopra una classe di equazioni dinamiche, Atti della R. Accad. Sci. di Torino, 1898, vol. 33, pp. 471–475.

    MATH  Google Scholar 

  115. Voronets, P.V., Sur les équations du mouvement pour les systèmes non holonomes, Mat. Sb., 1901, vol. 22, no. 4, pp. 659–686 (Russian).

    Google Scholar 

  116. Vranceanu, G., Les espaces non holonomes et leurs applications mécaniques, Mém. Sci. Math., 1936, vol. 76, pp. 1–70.

    MATH  Google Scholar 

  117. Walker, G.T., On a Curious Dynamical Property of Celts, Proc. Cambridge Phil. Soc., 1895, vol. 8, pt. 5, pp. 305–306.

    Google Scholar 

  118. Weber, R.W., Hamiltonian Systems with Constraints and Their Meaning in Mechanics, Arch. Rational Mech. Anal., 1986, vol. 91, no. 4, pp. 309–335.

    Article  MathSciNet  MATH  Google Scholar 

  119. Whittaker, E.T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., New York: Cambridge Univ. Press, 1989.

    Google Scholar 

  120. Woronetz, P., Über die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläche rollt, Math. Ann., 1911, vol. 70, pp. 410–453.

    Article  MathSciNet  MATH  Google Scholar 

  121. Woronetz, P., Über das Problem der Bewegung von vier Massenpunkten unter dem Einflusse von inneren Kräften, Math. Ann., 1907, vol. 63, no. 3, pp. 387–412.

    Article  MathSciNet  MATH  Google Scholar 

  122. Zegzhda, S.A., Soltakhanov Sh.Kh., and Yushkov, M.P., The Equations of Motion of Nonholonomic Systems and Variational Principles of Mechanics. The New Class of Control Problems, Moscow: Fizmatlit, 2005 (Russian).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Borisov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.V., Mamaev, I.S. & Bizyaev, I.A. Historical and critical review of the development of nonholonomic mechanics: the classical period. Regul. Chaot. Dyn. 21, 455–476 (2016). https://doi.org/10.1134/S1560354716040055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354716040055

MSC2010 numbers

Keywords

Navigation