Skip to main content
Log in

Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Dynamical equations are formulated and a numerical study is provided for selfoscillatory model systems based on the triple linkage hinge mechanism of Thurston–Weeks–Hunt–MacKay. We consider systems with a holonomic mechanical constraint of three rotators as well as systems, where three rotators interact by potential forces. We present and discuss some quantitative characteristics of the chaotic regimes (Lyapunov exponents, power spectrum). Chaotic dynamics of the models we consider are associated with hyperbolic attractors, at least, at relatively small supercriticality of the self-oscillating modes; that follows from numerical analysis of the distribution for angles of intersection of stable and unstable manifolds of phase trajectories on the attractors. In systems based on rotators with interacting potential the hyperbolicity is violated starting from a certain level of excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc. (NS), 1967, vol. 73, pp. 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  2. Shilnikov, L., Mathematical Problems of Nonlinear Dynamics: A Tutorial, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1997, vol. 7, no. 9, pp. 1953–2001.

    Article  MathSciNet  MATH  Google Scholar 

  3. Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, D.V.Anosov (Ed.), Encyclopaedia Math. Sci., vol. 66, Berlin: Springer, 1995.

  4. Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., vol. 54, Cambridge: Cambridge Univ. Press, 1995.

  5. Afraimovich, V. and Hsu, S.-B., Lectures on Chaotic Dynamical Systems, AMS/IP Stud. Adv. Math., vol. 28, Providence,R.I.: AMS, 2003.

  6. Pesin, Ya.B., Lectures on Partial Hyperbolicity and Stable Ergodicity, Zur. Lect. Adv. Math., Zürich: EMS, 2004.

    Book  MATH  Google Scholar 

  7. Bonatti, Ch., Díaz, L. J., and Viana, M., Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probobalistic Perspective, Encyclopaedia Math. Sci., vol. 102, Berlin: Springer, 2005.

  8. Kuznetsov, S.P., Example of a Physical System with a Hyperbolic Attractor of the Smale — Williams Type, Phys. Rev. Lett., 2005, vol. 95, no. 14, 144101, 4 pp.

    Article  Google Scholar 

  9. Kuznetsov, S.P. and Seleznev, E.P., Strange Attractor of Smale–Williams Type in the Chaotic Dynamics of a Physical System, J. Exp. Theor. Phys., 2006, vol. 102, no. 2, pp. 355–364; see also: Zh. Èksper. Teoret. Fiz., 2006, vol. 129, no. 2, pp. 400–412.

    Article  MathSciNet  Google Scholar 

  10. Isaeva, O.B., Jalnine, A.Yu., and Kuznetsov, S.P., Arnold’s Cat Map Dynamics in a System of Coupled Nonautonomous van der Pol Oscillators, Phys. Rev. E, 2006, vol. 74, no. 4, 046207, 5 pp.

    Article  Google Scholar 

  11. Kuznetsov, S.P. and Pikovsky, A., Autonomous Coupled Oscillators with Hyperbolic Strange Attractors, Phys. D, 2007, vol. 232, no. 2, pp. 87–102.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuznetsov, S.P., Example of Blue Sky Catastrophe Accompanied by a Birth of Smale–Williams Attractor, Regul. Chaotic Dyn., 2010, vol. 15, nos. 2–3, pp. 348–353.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuznetsov, S.P., Hyperbolic Chaos: A Physicist’s View, Berlin: Springer, 2012.

    Book  Google Scholar 

  14. Kuznetsov, S.P., Dynamical Chaos and Uniformly Hyperbolic Attractors: From Mathematics to Physics, Phys. Uspekhi, 2011, vol. 54, no. 2, pp. 119–144; see also: Uspekhi Fiz. Nauk, 2011, vol. 181, no. 2, pp. 121–149.

    Article  Google Scholar 

  15. Kuznetsov, S.P., Plykin Type Attractor in Electronic Device Simulated in MULTISIM, Chaos, 2011, vol. 21, no. 4, 043105, 10 pp.

    Article  Google Scholar 

  16. Isaeva, O.B., Kuznetsov, S.P., and Mosekilde, E., Hyperbolic Chaotic Attractor in Amplitude Dynamics of Coupled Self-Oscillators with Periodic Parameter Modulation, Phys. Rev. E., 2011, vol. 84, no. 1, 016228, 10 pp.

    Article  Google Scholar 

  17. Isaeva, O.B., Kuznetsov, A. S., and Kuznetsov, S. P., Hyperbolic Chaos in Parametric Oscillations of a String, Nelin. Dinam., 2013, vol. 9, no. 1, pp. 3–10 (Russian).

    Google Scholar 

  18. Kuznetsov, S.P., Kuznetsov, A. S., and Kruglov, V. P., Hyperbolic Chaos in Systems with Parametrically Excited Patterns of Standing Waves, Nelin. Dinam., 2014, vol. 10, no. 3, pp. 265–277 (Russian).

    Google Scholar 

  19. Jalnine, A.Yu., Hyperbolic and Non-Hyperbolic Chaos in a Pair of Coupled Alternately Excited FitzHugh–Nagumo Systems, Commun. Nonlinear Sci. Numer. Simul., 2015, vol. 23, nos. 1–3, pp. 202–208.

    Article  MathSciNet  Google Scholar 

  20. Kuznetsov, S.P., Some Mechanical Systems Manifesting Robust Chaos, Nonlinear Dynamics & Mobile Robotics, 2013, vol. 1, no. 1, pp. 3–22.

    Google Scholar 

  21. Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, Physics–Uspekhi, 2014, vol. 57, no. 5, pp. 453–460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.

    Google Scholar 

  22. Kuznetsov, S.P., Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-Dimensional Models, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 345–382.

    Article  MathSciNet  Google Scholar 

  23. Borisov, A.V. and Mamaev, I. S., On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation, Chaos, 2006, vol. 16, no. 1, 013118, 7 pp.

    Article  MathSciNet  Google Scholar 

  24. Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.

    Article  MathSciNet  MATH  Google Scholar 

  25. Thurston, W.P. and Weeks, J. R., The Mathematics of Three-Dimensional Manifolds, Sci. Am., 1984, vol. 251, no. 1, pp. 94–106.

    Article  Google Scholar 

  26. Kozlov, V.V., Topological obstacles to the integrability of natural mechanical systems, Soviet Math. Dokl., 1980, vol. 20, pp. 1413–1415.

    Google Scholar 

  27. Anosov, D.V., Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Trudy Mat. Inst. Steklov, 1967, vol. 90, pp. 3–210 (Russian).

    MathSciNet  Google Scholar 

  28. Balazs, N. L. and Voros, A., Chaos on the Pseudosphere, Phys. Rep., 1986, vol. 143, no. 3, pp. 109–240.

    Article  MathSciNet  Google Scholar 

  29. Hunt, T. J. and MacKay, R. S., Anosov Parameter Values for the Triple Linkage and a Physical System with a Uniformly Chaotic Attractor, Nonlinearity, 2003, vol. 16, no. 4, pp. 1499–1510.

    Article  MathSciNet  MATH  Google Scholar 

  30. Magalhães, M. L. S. and Pollicott, M., Geometry and Dynamics of Planar Linkages, Comm. Math. Phys., 2013, vol. 317, no. 3, pp. 615–634.

    Article  MathSciNet  MATH  Google Scholar 

  31. Kourganoff, M., Anosov Geodesic Flows, Billiards and Linkages, arXiv:1503.04305 (2015).

    Google Scholar 

  32. Kozlov, V.V., Closed orbits and chaotic dynamics of a charged particle in a periodic electromagnetic field, Regul. Chaotic Dyn., 1997, vol. 2, no. 1, pp. 3–12.

    MATH  Google Scholar 

  33. Kuznetsov, S.P., Chaos in the System of Three Coupled Rotators: From Anosov Dynamics to Hyperbolic Attractor, Izv. Saratov. Univ. (N. S.), Ser. Fiz., 2015, vol. 15, no. 2, pp. 5–17 (Russian).

    Google Scholar 

  34. Lai, Y.-Ch., Grebogi, C., Yorke, J. A., and Kan, I., How Often Are Chaotic Saddles Nonhyperbolic?, Nonlinearity, 1993, vol. 6, no. 5, pp. 779–798.

    Article  MathSciNet  MATH  Google Scholar 

  35. Anishchenko, V. S., Kopeikin, A. S., Kurths, J., Vadivasova, T.E., Strelkova, G. I., Studying Hyperbolicity in Chaotic Systems, Phys. Lett. A, 2000, vol. 270, no. 6, pp. 301–307.

    Article  MathSciNet  MATH  Google Scholar 

  36. Ginelli, F., Poggi, P., Turchi, A., Chaté, H., Livi, R., and Politi, A., Characterizing Dynamics with Covariant Lyapunov Vectors, Phys. Rev. Lett., 2007, vol. 99, no. 13, 130601, 4 pp.

    Article  Google Scholar 

  37. Kuptsov, P.V., Fast Numerical Test of Hyperbolic Chaos, Phys. Rev. E, 2012, vol. 85, no. 1, 015203, 4 pp.

    Article  MathSciNet  Google Scholar 

  38. Gantmacher, F.R., Lectures in Analytical Mechanics, Moscow: Mir, 1975.

    Google Scholar 

  39. Goldstein, H., Poole, Ch.P. ffixJr., Safko, J. L., Classical Mechanics, 3rd ed., Boston,Mass.: Addison-Wesley, 2001.

    Google Scholar 

  40. Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory; P. 2: Numerical Application, Meccanica, 1980, vol. 15, pp. 9–30.

    Article  MATH  Google Scholar 

  41. Jenkins, G.M. and Watts, D.G., Spectral Analysis and Its Applications, San Francisco,Calif.: Holden-Day, 1968.

    MATH  Google Scholar 

  42. Rössler, O.E., An Equation for Hyperchaos, Phys. Lett. A, 1979, vol. 71, no. 2, pp. 155–157.

    Article  MathSciNet  MATH  Google Scholar 

  43. Sinaĭ, Ya.G., The Stochasticity of Dynamical Systems: Selected Translations, Selecta Math. Soviet., 1981, vol. 1, no. 1, pp. 100–119.

    MathSciNet  Google Scholar 

  44. Kuznetsov, S.P. and Sataev, I.R., Hyperbolic Attractor in a System of Coupled Non-Autonomous van derPol Oscillators: Numerical Test for Expanding and Contracting Cones, Phys. Lett. A, 2007, vol. 365, nos. 1–2, pp. 97–104.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey P. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.P. Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories. Regul. Chaot. Dyn. 20, 649–666 (2015). https://doi.org/10.1134/S1560354715060027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354715060027

MSC2010 numbers

Keywords

Navigation