Skip to main content
Log in

On some simple examples of mechanical systems with hyperbolic chaos

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Examples of mechanical systems with hyperbolic chaos are discussed, including the Thurston–Weeks–Hunt–MacKay hinge mechanism, in which conservative Anosov dynamics is realized, and dissipative systems with Smale–Williams type attractors (a particle on a plane under periodic kicks, interacting particles sliding on two alternately rotating disks, and a string with parametric excitation by modulated pump). The examples considered in the paper are interesting from the viewpoint of filling hyperbolic theory, as a well-developed field of the mathematical theory of dynamical systems, with physical content. The results of computer tests for hyperbolicity of the systems are presented that are based on the analysis of the statistics of intersection angles of stable and unstable manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Afraimovich, S. V. Gonchenko, L. M. Lerman, A. L. Shilnikov, and D. V. Turaev, “Scientific heritage of L. P. Shilnikov,” Regul. Chaotic Dyn. 19 (4), 435–460 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Afraimovich and S.-B. Hsu, Lectures on Chaotic Dynamical Systems (International Press, Somerville, MA, 2003).

    Book  MATH  Google Scholar 

  3. A. D. Aleksandrov and N. Yu. Netsvetaev, Geometry (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  4. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillators (Fizmatgiz, Moscow, 1959; Pergamon, Oxford, 1966).

    MATH  Google Scholar 

  5. V. S. Anishchenko, A. S. Kopeikin, J. Kurths, T. E. Vadivasova, and G. I. Strelkova, “Studying hyperbolicity in chaotic systems,” Phys. Lett. A 270 (6), 301–307 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. D. V. Anosov, Geodesic Flows on Closed Riemann Manifolds with Negative Curvature (Nauka, Moscow, 1967), Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 90 [Proc. Steklov Inst. Math. 90 (1969)].

    MATH  Google Scholar 

  7. D. V. Anosov, “Dynamical systems in the 1960s: The hyperbolic revolution,” in Mathematical Events of the Twentieth Century (Springer, Berlin, 2006), pp. 1–17.

    Google Scholar 

  8. D. V. Anosov, S. Kh. Aranson, V. Z. Grines, R. V. Plykin, E. A. Sataev, A. V. Safonov, V. V. Solodov, A. N. Starkov, A. M. Stepin, and S. V. Shlyachkov, Dynamical Systems with Hyperbolic Behaviour (VINITI, Moscow, 1991), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 66: Dynamical Systems–9; Engl. transl. in Dynamical Systems IX (Springer, Berlin,1995), Encycl. Math. Sci. 66.

    MATH  Google Scholar 

  9. N. L. Balazs and A. Voros, “Chaos on the pseudosphere,” Phys. Rep. 143 (3), 109–240 (1986).

    Article  MathSciNet  Google Scholar 

  10. M. S. Baptista, “Cryptography with chaos,” Phys. Lett. A 240 (1–2), 50–54 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Parts 1, 2,” Meccanica 15, 9–20, 21–30 (1980).

    Article  MATH  Google Scholar 

  12. G. M. Bernstein and M. A. Lieberman, “Secure random number generation using chaotic circuits,” IEEE Trans. Circuits Syst. 37 (9), 1157–1164 (1990).

    Article  MathSciNet  Google Scholar 

  13. I. A. Bizyaev, A. V. Borisov, and A. O. Kazakov, “Dynamics of the Suslov problem in a gravitational field: Reversal and strange attractors,” Regul. Chaotic Dyn. 20 (5), 605–626 (2015) [Nelinein. Din. 12 (2), 263–287 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  14. E. M. Bollt and J. D. Meiss, “Targeting chaotic orbits to the Moon through recurrence,” Phys. Lett. A 204 (5–6), 373–378 (1995).

    Article  Google Scholar 

  15. C. Bonatti, L. J. Díaz, and M. Viana, Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective (Springer, Berlin, 2005).

    MATH  Google Scholar 

  16. A. V. Borisov, A. O. Kazakov, and S. P. Kuznetsov, “Nonlinear dynamics of the rattleback: A nonholonomic model,” Usp. Fiz. Nauk 184 (5), 493–500 (2014) [Phys. Usp. 57, 453–460 (2014)].

    Article  Google Scholar 

  17. A. V. Borisov and I. S. Mamaev, “Strange attractors in rattleback dynamics,” Usp. Fiz. Nauk 173 (4), 407–418 (2003) [Phys. Usp. 46, 393–403 (2003)].

    Article  Google Scholar 

  18. A. S. Dmitriev, E. V. Efremova, N. A. Maksimov, and A. I. Panas, Generation of Chaos (Tekhnosfera, Moscow, 2012) [in Russian].

    Google Scholar 

  19. A. S. Dmitriev, E. V. Efremova, A. Yu. Nikishov, and A. I. Panas, “Chaotic generators: From vacuum devices to nanoschems,” Radioelektron., Nanosist., Inf. Tekhnol. 1 (1–2), 6–22 (2009).

    Google Scholar 

  20. A. S. Dmitriev and A. I. Panas, Dynamical Chaos: New Information Carriers for Communication Systems (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  21. M. Drutarovsk´y and P. Galajda, “A robust chaos-based true random number generator embedded in reconfigurable switched-capacitor hardware,” Radioengineering 16 (3), 120–127 (2007).

    Google Scholar 

  22. J. D. Farmer, “Chaotic attractors of an infinite-dimensional dynamical system,” Physica D 4 (3), 366–393 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  23. F. R. Gantmakher, Lectures in Analytical Mechanics, 2nd ed. (Nauka, Moscow, 1966; Mir, Moscow, 1970); 3rd ed. (Fizmatlit, Moscow,2005) [in Russian].

    MATH  Google Scholar 

  24. A. V. Gaponov-Grekhov and M. I. Rabinovich, “Problems of present-day nonlinear dynamics,” Vestn. Ross. Akad. Nauk 67 (7), 608–614 (1997) [Herald Russ. Acad. Sci. 67 (4), 257–262 (1997)].

    Google Scholar 

  25. F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi, “Characterizing dynamics with covariant Lyapunov vectors,” Phys. Rev. Lett. 99 (13), 130601 (2007).

    Article  Google Scholar 

  26. H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Addison-Wesley, San Francisco, 2001).

    MATH  Google Scholar 

  27. A. S. Gonchenko, S. V. Gonchenko, and A. O. Kazakov, “Richness of chaotic dynamics in nonholonomic models of a Celtic stone,” Regul. Chaotic Dyn. 18 (5), 521–538 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Gritli, N. Khraief, and S. Belghith, “Chaos control in passive walking dynamics of a compass-gait model,” Commun. Nonlinear Sci. Numer. Simul. 18 (8), 2048–2065 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  29. Handbook of Chaos Control, Ed. by E. Schöll and H. G. Schuster (Wiley-VCH, Weinheim, 2008).

  30. T. J. Hunt and R. S. MacKay, “Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor,” Nonlinearity 16 (4), 1499–1510 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  31. O. B. Isaeva, A. Yu. Jalnine, and S. P. Kuznetsov, “Arnold’s cat map dynamics in a system of coupled nonautonomous van der Pol oscillators,” Phys. Rev. E 74 (4), 046207 (2006).

    Article  Google Scholar 

  32. O. B. Isaeva, A. S. Kuznetsov, and S. P. Kuznetsov, “Hyperbolic chaos of standing wave patterns generated parametrically by a modulated pump source,” Phys. Rev. E 87 (4), 040901 (2013).

    Article  Google Scholar 

  33. O. B. Isaeva, A. S. Kuznetsov, and S. P. Kuznetsov, “Hyperbolic chaos in parametric oscillations of a string,” Nelinein. Din. 9 (1), 3–10 (2013).

    Article  Google Scholar 

  34. A. Yu. Jalnine, “A new information transfer scheme based on phase modulation of a carrier chaotic signal,” Izv. Vyssh. Uchebn. Zaved., Prikl. Nelinein. Din. 22 (5), 3–12 (2014).

    Google Scholar 

  35. A. Yu. Jalnine, “Hyperbolic and non-hyperbolic chaos in a pair of coupled alternately excited FitzHugh–Nagumo systems,” Commun. Nonlinear Sci. Numer. Simul. 23 (1–3), 202–208 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  36. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  37. J. L. Kaplan and J. A. Yorke, “Chaotic behavior of multidimensional difference equations,” in Functional Differential Equations and Approximation of Fixed Points, Ed. by H.-O. Peitgen and H.-O. Walther (Springer, Berlin, 1979), Lect. Notes Math. 730, pp. 204–227.

    Google Scholar 

  38. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, Cambridge, 1995).

    Book  MATH  Google Scholar 

  39. M. E. Kazaryan, A Course of Differential Geometry (2001–2002) (MTsNMO, Moscow, 2002) [in Russian].

    Google Scholar 

  40. A. A. Koronovskii, O. I. Moskalenko, and A. E. Hramov, “On the use of chaotic synchronization for secure communication,” Usp. Fiz. Nauk 179 (12), 1281–1310 (2009) [Phys. Usp. 52, 1213–1238 (2009)].

    Article  Google Scholar 

  41. M. Kourganoff, “Anosov geodesic flows, billiards and linkages,” arXiv: 1503.04305 [math.DS].

  42. V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems,” Dokl. Akad. Nauk SSSR 249 (6), 1299–1302 (1979) [Sov. Math., Dokl. 20, 1413–1415 (1979)].

    MathSciNet  MATH  Google Scholar 

  43. V. P. Kruglov, A. S. Kuznetsov, and S. P. Kuznetsov, “Hyperbolic chaos in systems with parametrically excited patterns of standing waves,” Nelinein. Din. 10 (3), 265–277 (2014).

    MATH  Google Scholar 

  44. V. P. Kruglov, S. P. Kuznetsov, and A. Pikovsky, “Attractor of Smale–Williams type in an autonomous distributed system,” Regul. Chaotic Dyn. 19 (4), 483–494 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  45. P. V. Kuptsov, “Computation of Lyapunov exponents for spatially extended systems: Advantages and limitations of various numerical methods,” Izv. Vyssh. Uchebn. Zaved., Prikl. Nelinein. Din. 18 (5), 93–112 (2010).

    MATH  Google Scholar 

  46. P. V. Kuptsov, “Fast numerical test of hyperbolic chaos,” Phys. Rev. E 85 (1), 015203 (2012).

    Article  Google Scholar 

  47. P. V. Kuptsov, S. P. Kuznetsov, and A. Pikovsky, “Hyperbolic chaos of Turing patterns,” Phys. Rev. Lett. 108 (19), 194101 (2012).

    Article  Google Scholar 

  48. A. P. Kuznetsov, S. P. Kuznetsov, and N. M. Ryskin, Nonlinear Oscillations (Fizmatlit, Moscow, 2002) [in Russian].

    MATH  Google Scholar 

  49. A. P. Kuznetsov, N. A. Migunova, I. R. Sataev, Yu. V. Sedova, and L. V. Turukina, “From chaos to quasiperiodicity,” Regul. Chaotic Dyn. 20 (2), 189–204 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  50. S. P. Kuznetsov, Dynamic Chaos (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  51. S. P. Kuznetsov, “Example of a physical system with a hyperbolic attractor of the Smale–Williams type,” Phys. Rev. Lett. 95 (14), 144101 (2005).

    Article  Google Scholar 

  52. S. P. Kuznetsov, “Dynamical chaos and uniformly hyperbolic attractors: From mathematics to physics,” Usp. Fiz. Nauk 181 (2), 121–149 (2011) [Phys. Usp. 54, 119–144 (2011)].

    Article  Google Scholar 

  53. S. P. Kuznetsov, “Plykin type attractor in electronic device simulated in MULTISIM,” Chaos 21 (4), 043105 (2011).

    Article  MATH  Google Scholar 

  54. S. P. Kuznetsov, Hyperbolic Chaos: A Physicist’s View (Springer, Berlin, 2012).

    Book  MATH  Google Scholar 

  55. S. P. Kuznetsov, Dynamic Chaos and Hyperbolic Attractors: From Mathematics to Physics (Inst. Komp’yut. Issled., Moscow, 2013) [in Russian].

    Google Scholar 

  56. S. P. Kuznetsov, “Some mechanical systems manifesting robust chaos,” Nonlinear Dyn. Mob. Rob. 1 (1), 3–22 (2013).

    MathSciNet  Google Scholar 

  57. S. P. Kuznetsov, “Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models,” Nelinein. Din. 11 (1), 3–49 (2015) [Regul. Chaotic Dyn. 20 (3), 345–382 (2015)].

    Article  MathSciNet  Google Scholar 

  58. S. P. Kuznetsov, “Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories,” Regul. Chaotic Dyn. 20 (6), 649–666 (2015) [Nelinein. Din. 12 (1), 121–143 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  59. S. P. Kuznetsov, “Chaos in a system of three coupled rotators: From Anosov’s dynamics to a hyperbolic attractor,” Izv. Saratov Univ., Nov. Ser., Fiz. 15 (2), 5–17 (2015).

    Google Scholar 

  60. S. P. Kuznetsov, “From geodesic flow on a surface of negative curvature to electronic generator of robust chaos,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 26 (14), 1650232 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  61. S. P. Kuznetsov and A. Pikovsky, “Autonomous coupled oscillators with hyperbolic strange attractors,” Physica D 232 (2), 87–102 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  62. S. P. Kuznetsov and V. I. Ponomarenko, “Realization of a strange attractor of the Smale–Williams type in a radiotechnical delay-feedback oscillator,” Pisma Zh. Tekh. Fiz. 34 (18), 1–8 (2008) [Tech. Phys. Lett. 34 (9), 771–773 (2008)].

    Google Scholar 

  63. S. P. Kuznetsov and I. R. Sataev, “Verification of hyperbolicity conditions for a chaotic attractor in a system of coupled nonautonomous van der Pol oscillators,” Izv. Vyssh. Uchebn. Zaved., Prikl. Nelinein. Din. 14 (5), 3–29 (2006).

    MATH  Google Scholar 

  64. S. P. Kuznetsov and I. R. Sataev, “Hyperbolic attractor in a system of coupled non-autonomous van der Pol oscillators: Numerical test for expanding and contracting cones,” Phys. Lett. A 365 (1–2), 97–104 (2007).

    Article  MATH  Google Scholar 

  65. S. P. Kuznetsov and E. P. Seleznev, “A strange attractor of the Smale–Williams type in the chaotic dynamics of a physical system,” Zh. Eksp. Teor. Fiz. 129 (2), 400–412 (2006) [J. Exp. Theor. Phys. 102 (2), 355–364 (2006)].

    MathSciNet  Google Scholar 

  66. S. P. Kuznetsov and L. V. Turukina, “Attractors of Smale–Williams type in periodically kicked model systems,” Izv. Vyssh. Uchebn. Zaved., Prikl. Nelinein. Din. 18 (5), 80–92 (2010).

    MATH  Google Scholar 

  67. Y.-C. Lai, C. Grebogi, J. A. Yorke, and I. Kan, “How often are chaotic saddles nonhyperbolic?,” Nonlinearity 6 (5), 779–798 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  68. C. Letellier, Chaos in Nature (World Sci., Hackensack, NJ, 2013).

    Book  MATH  Google Scholar 

  69. K. A. Lukin, “Noise radar technology,” Telecommun. Radio Eng. 55 (12), 8–16 (2001).

    Article  Google Scholar 

  70. M. L. S. Magalhaes and M. Pollicott, “Geometry and dynamics of planar linkages,” Commun. Math. Phys. 317 (3), 615–634 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  71. L. I. Mandelstam, Complete Collection of Works, Vol. 4: Lectures on Oscillations (1930–1932) (Akad. Nauk SSSR, Moscow, 1955) [in Russian].

    Google Scholar 

  72. A. S. Monin, “On the nature of turbulence,” Usp. Fiz. Nauk 125 (5), 97–122 (1978) [Sov. Phys. Usp. 21, 429–442 (1978)].

    Article  MathSciNet  Google Scholar 

  73. Yu. I. Neimark and P. S. Landa, Stochastic and Chaotic Oscillations (Nauka, Moscow, 1987; Kluwer, Dordrecht, 1992).

    Book  MATH  Google Scholar 

  74. Ya. B. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity (Eur. Math. Soc., Zürich, 2004), Zurich Lect. Adv. Math.

    Book  MATH  Google Scholar 

  75. N. Ptitsyn, Application of the Theory of Deterministic Chaos to Cryptography (Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Moscow, 2002) [in Russian].

    Google Scholar 

  76. D. R. Rowland, “Parametric resonance and nonlinear string vibrations,” Am. J. Phys. 72 (6), 758–766 (2004).

    Article  Google Scholar 

  77. H. G. Schuster and W. Just, Deterministic Chaos: An Introduction (Wiley-VCH, Weinheim, 2005).

    Book  MATH  Google Scholar 

  78. S. K. Scott, Chemical Chaos (Clarendon, Oxford, 1993).

    Google Scholar 

  79. L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, and L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics (World Sci., Singapore, 1998, 2001; Inst. Komp’yut. Issled., Moscow, 2004, 2009), Parts 1, 2.

    MATH  Google Scholar 

  80. Ya. G. Sinai, “Stochasticity of dynamical systems,” in Nonlinear Waves, Ed. by A. V. Gaponov-Grekhov (Nauka, Moscow, 1979), pp. 192–212 [in Russian].

    Google Scholar 

  81. S. Smale, “Differentiable dynamical systems,” Bull. Am. Math. Soc. 73 (6), 747–817 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  82. S. Steingrube, M. Timme, F. Wörgötter, and P. Manoonpong, “Self-organized adaptation of a simple neural circuit enables complex robot behaviour,” Nature Phys. 6 (3), 224–230 (2010).

    Article  Google Scholar 

  83. D. J. Struik, Lectures on Classical Differential Geometry (Dover Publ., New York, 1988).

    MATH  Google Scholar 

  84. J. W. Strutt, The Theory of Sound (Macmillan, London, 1894), Vol. 1.

    Google Scholar 

  85. J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos (J. Wiley & Sons, Chichester, 1986).

    MATH  Google Scholar 

  86. W. P. Thurston and J. R. Weeks, “The mathematics of three-dimensional manifolds,” Sci. Am. 251 (1), 108–120 (1984).

    Article  Google Scholar 

  87. L. V. Turukina, “Hyperbolic chaos in systems with periodic impulse kicks,” Nelinein. Mir 8 (2), 72–73 (2010).

    Google Scholar 

  88. D. Wilczak, “Uniformly hyperbolic attractor of the Smale–Williams type for a Poincaré map in the Kuznetsov system,” SIAM J. Appl. Dyn. Syst. 9 (4), 1263–1283 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  89. R. F. Williams, “Expanding attractors,” Publ. Math., Inst. Hautes étud. Sci. 43, 169–203 (1974).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kuznetsov.

Additional information

Original Russian Text © S.P. Kuznetsov, V.P. Kruglov, 2017, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Vol. 297, pp. 232–259.

In memory of Academician Dmitry Victorovich Anosov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.P., Kruglov, V.P. On some simple examples of mechanical systems with hyperbolic chaos. Proc. Steklov Inst. Math. 297, 208–234 (2017). https://doi.org/10.1134/S0081543817040137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543817040137

Navigation