Skip to main content
Log in

Synthesis and Characterization of Schottky Diodes from Polyaniline Doped with Trifluoroacetic Acid

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

In this paper we report the fabrication of Schottky barriers using polyaniline (PANI) doped with trifluoroacetic acid (TFA). The PANI doped with TFA (PANI-TFA) was prepared by chemical oxidative polymerization using an indirect synthetic route known as doping-dedoping-redoping. The structural, morphological, optical and thermal properties of the obtained doped polyaniline (PANI-TFA) were studied by FTIR, SEM, UV−Vis-NIR, and TGA and DSC, respectively. Its electrical conductivity was measured at room temperature with a four-probe method. FTIR and UV−Vis-NIR analysis confirmed the structure and the doping of the emeraldine base by the trifluoroacetic acid. Four-probe measurements showed that the electrical conductivity of the PANI-TFA sample was around 0.226 S/cm. In addition, a Schottky diode with configuration Al/PANI-TFA/Ag was fabricated. Current–voltage (IV) and capacitance–voltage–frequency (CVf) measurements were used to characterize the fabricated Al/PANI-TFA/Ag device. It was found that the (IV) plot was nonlinear and asymmetric and the (1/C2V) plots were almost linear in reverse bias voltage indicating that the Al/PANI-TFA/Ag device exhibited behavior similar to a diode with rectification behavior and followed the modified Schottky diode equation. The diode parameters, including the ideality factor, barrier height, saturation current and carrier concentration, were calculated using the modified Shockley equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. H. S. Roy, M. M. Islam, M. Y. A-Mollah, and M. A. B. H. Susan, Mater Today: Proc. 5, 15267 (2018).

    Google Scholar 

  2. N. Anwar, M. Asifa, A. Shakoor, N. A. Niaz, M. Qasim, M. Irfan, G. Ali, and A. Mahmood, Polym. Sci., Ser. A 62, 543 (2020).

    Article  Google Scholar 

  3. A. Ayub, A. Shakoor, T. Z. Rizvi, and E. Elahi, Polym. Sci., Ser. A 59, 233 (2017).

    Article  CAS  Google Scholar 

  4. A. N. Begum, N. Dhachanamoorthi, M. E. R. Saravanan, P. Jayamurugan, D. Manoharan, and V. Ponnuswamy, Optik (Weimar) 124, 238 (2013).

    Article  CAS  Google Scholar 

  5. B. S. Misirlioglu, M. Serin, F. Kuruoglu, and D. S. Dasdan, J. Nanoelectron. Optoelectron. 11, 219 (2016).

    CAS  Google Scholar 

  6. B. Massoumi and S. Fathalipour, Polym. Sci., Ser. A 56, 373 (2014).

    Article  CAS  Google Scholar 

  7. Y. Wang, H. Zheng, L. Jia, H. Li, T. Li, K. Chen, Y. Gu, and J. Ding, J. Macromol. Sci., Part A: Pure Appl. Chem. 51, 619 (2014).

    Article  CAS  Google Scholar 

  8. S. Bhadra, K. Singha, and N. D. Khastgir, J. Appl. Polym. Sci. 104, 1900 (2007).

    Article  CAS  Google Scholar 

  9. J. Y. Shimano and A. G. MacDiarmid, Synth Met. 123, 251 (2001).

    Article  CAS  Google Scholar 

  10. N. Plesu, G. Ilia, A. Pascariu, and G. Vlase, Synth Met. 156, 230 (2006).

    Article  CAS  Google Scholar 

  11. N. A. Rangel-Vázquez, R. Salgado-Delgado, E. García-Hernández, and A. M. Mendoza-Martínez, J. Mex. Chem. Soc. 53, 248 (2009).

    Google Scholar 

  12. S. Bhadra, D. Khastgir, N. K. Singha, and J. H. Leeb, Polym. Sci. 34, 783 (2009).

    CAS  Google Scholar 

  13. N. Naar, S. Lamouri, and A. Benaboura, Int. J. Adv. Res. Sci. Eng. Technol. 62, 1041 (2019).

    Google Scholar 

  14. O. N. Paul-Nwokocha and J. O. Ozuomba, Niger. J. Technol. 37, 135 (2018).

    Article  Google Scholar 

  15. S. Ashokan, V. Ponnuswamy, P. Jayamurugan, J. Chandrasekaran, and Y. V. Subba-Rao, Superlattices Microstruct. 85, 282 (2015).

    Article  CAS  Google Scholar 

  16. M. Das, A. Akbar, and D. Sarkar, Synth. Met. 249, 69 (2019).

    Article  CAS  Google Scholar 

  17. Ş. Aydoğan, M. Sağlam, and A. Türüt, Microelectron. Eng. 85, 278 (2008).

    Article  Google Scholar 

  18. F. Chung, T. C. Wen, and A. Gopalan, Mater. Sci. Eng. B 116, 125 (2005).

    Article  Google Scholar 

  19. J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, N. Haldolaarachchige, D. P. Young, and Z. Guo, J. Mater. Chem. 21, 3952 (2011).

    Article  CAS  Google Scholar 

  20. P. Kumar, S. Adhikari, and P. Banerji, Synth. Met. 160, 1507 (2010).

    Article  CAS  Google Scholar 

  21. H. R. Laura, M. J. Abad, M. G. R. Victoria, L. Aurora, C. Pedro, and L. M. Senentxu, Mater. Des. 114, 288 (2017).

    Article  Google Scholar 

  22. N. Naar, S. Lamouri, B. Belaabed, T. Kouroughli, and N. Gabouze, Polym. J. 4, 432 (2009).

    Article  Google Scholar 

  23. B. Belaabed, S. Lamouri, N. Naar, P. Bourson, and S. O. S. Hamady, Polym. J. 42, 546 (2010).

    Article  CAS  Google Scholar 

  24. D. S. Vicentini, R. V. Salvatierra, A. J. G. Zarbin, L. G. Dutra, and M. M. Sá, J. Braz. Chem. Soc. 25, 1939 (2014).

    CAS  Google Scholar 

  25. N. Naar, D. Djurado, L. Saad, and Ad. Pron, J. Macromol. Sci., Part A: Pure Appl. Chem. 50, 631 (2013).

    Article  CAS  Google Scholar 

  26. F. Yakuphanoglu, E. Basaran, B. F. Senkal, and E. Sezer, J. Phys. Chem. B 110, 2006 (16908).

  27. H. Zeghioud, S. Lamouri, Y. Mahmoudi, and T. Hadj-Ali, J. Serb. Chem. Soc. 80, 1435 (2015).

    Article  CAS  Google Scholar 

  28. M. Campos, L. O. S. Bulhões, and C. A. Lindino, Sens. Actuators A 87, 67 (2000).

    Article  CAS  Google Scholar 

  29. T. V. Jinitha, S. K. P. Hussan, N. Subair, V. Shaniba, A. K. Balana, and E. Purushothaman, RSC Adv. 8, 34388 (2018).

  30. S. Angappane, N. Rajeev-Kini, T.S. Natarajan, G. Rangarajan, and B. Wessling, Thin Solid Films 417, 202 (2002).

    Article  CAS  Google Scholar 

  31. S. N. Singh, L. Kumar, A. Kumar, S. Vaisakh, S. D. Singh, K. Sisodiya, S. Srivastava, M. Kansal, S. Rawat, T. A. Singh, and T. Anita, Mater. Sci. Semicond. Process. 60, 29 (2017).

    Article  CAS  Google Scholar 

  32. L. Yun-Ze, Y. Zhi-Hua, H. Wen, C. Zhao-Jia, and W. Mei-Xiang, Chin. Phys. B 17, 2707 (2008).

    Article  Google Scholar 

  33. J. N. Ansari, S. Khasim, A. Parveen, O. A. Al-Hartomy, Z. Khattari, N. Badi, and A. S. Roy, Polym. Adv. Technol. 27, 1064 (2016).

    Article  CAS  Google Scholar 

  34. S. A. Yeriskin, H. I. Unal, and B. Sari, J. Appl. Polym. 120, 390 (2011).

    Article  CAS  Google Scholar 

  35. N. Karaoğlan, H. U. Tecimer, Ş. Altındal, and C. Bindal, J. Mater. Sci.: Mater. Electron. 30, 14224 (2019).

    Google Scholar 

  36. W. R. Agami, Phys. B (Amsterdam, Neth.) 534, 17 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aissat Fares.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aissat Fares, Naar, N. & Lamouri, S. Synthesis and Characterization of Schottky Diodes from Polyaniline Doped with Trifluoroacetic Acid. Polym. Sci. Ser. B 63, 502–513 (2021). https://doi.org/10.1134/S1560090421050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421050055

Navigation