Skip to main content
Log in

Dependence of the Mechanical Properties of Polycyclopentadiene Radiation-Modified with Accelerated Electrons on the Content of the Gel Fraction

  • MODIFICATION OF POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract—The stress–strain properties of radiation-modified polydicyclopentadiene synthesized by the PolyHIPE technology are studied. The dependence of the tensile strength on the absorbed dose follows a complex pattern. A rise in the dependence in the low-dose region, that is, in the range from 10 to 40 kGy, may be associated with the predominance of radiation crosslinking over degradation. With the increase in the absorbed dose above 40 kGy, the test material generally behaves as predominantly destructuring. Experimentally detected are the signs of tensile strength recovery in the dose range from 20 to 40 kGy to the corresponding values for the unirradiated sample, which indicates the enhanced strength properties of the material. When comparing the values obtained for the material irradiated with a dose of 40 kGy and the unirradiated material, it is clear that the tensile strength decreases by just 5%. It is found that, in the dose range from 0 to 10 kGy, degradation reactions dominate, leading to a low content of the gel fraction. With a further increase in the radiation dose, the intensity of crosslinking of macromolecules becomes higher than the intensity of degradation, which leads to an increase in the proportion of the gel fraction. In the range of 30–50 kGy, the character of this dependence indicates that radiation crosslinking predominates over degradation and it is maximal at a dose of 40 kGy, as follows from a small amount of the dissolved part of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. E. Fogg and H. M. Foucault, Compr. Organomet. Chem. III 11, 623 (2007).

    CAS  Google Scholar 

  2. I. Njoroge, P. A. Kempler, X. Deng, S. T. Arnold, and G. Kane Jennings, Langmuir 33, 13903 (2017).

    Article  CAS  Google Scholar 

  3. S. T. Nguyen, L. K. Johnson, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc. 115, 9858 (1993).

    Article  CAS  Google Scholar 

  4. M. S. Sanford, J. A. Love, and R. H. Grubbs, J. Am. Chem. Soc. 123, 6543 (2001).

    Article  CAS  Google Scholar 

  5. T. M. Trnka, Acc. Chem. Res. 34, 18 (2001).

    Article  CAS  Google Scholar 

  6. D. A. Rusakov, E. I. Korotkova, A. A. Lyapkov, O. I. Slavgorodskaya, and Yu. V. Dontsov, Fundam. Issled., No. 8, 700 (2013).

  7. V. I. Irzhak, B. A. Rozenberg, and N. S. Enikolopyan, Cross-Linked Polymers (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  8. Brief Chemical Encyclopedia, Ed. by I. L. Knunyants (Sovetskaya entsiklopediya, Moscow, 1990), Vol. 2 [in Russian].

  9. S. Yang, Y. Wang, Y. Jia, X. Sun, P. Sun, Y. Qin, R. Li, H. Liu, and C. Nie, Colloid Polym. Sci. 296, 1005 (2018).

    Article  CAS  Google Scholar 

  10. M. Yu. Matrosova and O. V. Litvinenko, in Proceedings of the All-Russian Forum of Scientific Youth “Bogatstvo Rossii”, Moscow, Russia,2018 (Izd-vo Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Moscow, 2018), p. 168 [in Russian].

  11. V. L. Auslender, V. V. Bezuglov, A. A. Bryazgin, L. A. Voronin, V. A. Gorbunov, M. V. Korobeinikov, V. E. Nekhaev, A. D. Panfilov, V. S. Podobaev, V. O. Tkachenko, A. A. Tuvik, and B. L. Faktorovich, Zh. Vestn. Nizhegorod. Gos. Univ. Ser. Fiz. 1 (2), 89 (2006).

    Google Scholar 

  12. S. Kovačič, F. Preishuber-Pflügl, and C. Slugovc, Macromol. Mater. Eng. 299, 843 (2014).

    Article  Google Scholar 

  13. B. K. Keitz, A. Fedorov, and R. H. Grubbs, J. Am. Chem. Soc. 134, 2040 (2012).

    Article  CAS  Google Scholar 

  14. M. Yu. Kozhanova, O. V. Litvinenko, P. A. Khakhulin, and I. S. Golubenko, Polim. Mater. Tekhnol. 4 (4), 59 (2018).

    Google Scholar 

  15. A. K. Fedotov, V. M. Anishchik, and M. S. Tivanov, Physical Material Science: Tutorial in Three Parts. Materials of Energy and Energy Saving (Vysheishaya Shkola, Minsk, 2015), Part 3 [in Russian].

  16. W. B. Jensen, J. Chem. Educ. 84, 1913 (2007).

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by Small Business in Science and Technology Promotion Fund (“Umnik” Program, contract no. 13732GU/2018, April 1, 2019, Ulyanovsk oblast).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kozhanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhanova, M.Y., Litvinenko, O.V., Khakhulin, P.A. et al. Dependence of the Mechanical Properties of Polycyclopentadiene Radiation-Modified with Accelerated Electrons on the Content of the Gel Fraction. Polym. Sci. Ser. B 61, 771–775 (2019). https://doi.org/10.1134/S1560090419050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419050087

Navigation