Skip to main content
Log in

Polyaniline–Graphene–Gold Nanocomposite for Visible Light Active Photo Catalysis and Enhanced Thermal Electrical Stability

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Polyaniline/graphene composite has been recognized as an excellent material for various photocatalytic, electrical and electronic applications. We have incorporated gold nanoparticles into polyaniline/graphene in order to enhance its visible light photocatalytic activity, electrical conductivity and thermal electrical stability at room temperature. Gold nanoparticles are known to absorb visible light efficiently. Graphene has been used as a conductive binding material for polyaniline and gold nanoparticle. A simple facile in situ oxidative chemical polymerization technique has been used to produce composite material. Additionally, structural and optical properties have also been investigated. TEM images clearly revealed that graphene and gold nanoparticles were well dispersed within the PANI matrix for better translation of its properties. Synthesized polyaniline/graphene/gold composite materials showed excellent visible light photocatalytic activity, enhanced electrical conductivity, and thermal electrical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. M. Hossain, O. K. Park, J. R. Hahn, and B. C. Ku, Mater. Lett. 123, 90 (2014).

    Article  CAS  Google Scholar 

  2. M. Hossain, H. Shima, M. A. Islam, M. Hasan, and M. Lee, RSC Adv. 6, 4683 (2016).

  3. M. Hasan, M. O. Ansari, M. Cho, and M. Lee, Electron. Mater. Lett. 11, 1 (2015).

    Article  CAS  Google Scholar 

  4. M. Hasan, A. N. Banerjee, and M. Lee, J. Ind. Eng. Chem. 21, 828 (2015).

    Article  CAS  Google Scholar 

  5. M. Hasan and M. Lee, Prog. Nat. Sci.: Mater. Int. 24, 579 (2015).

    Article  Google Scholar 

  6. M. Hasan, M.O. Ansari, M. Cho, and M. Lee, J. Ind. Eng. Chem. 22, 147 (2015).

    Article  CAS  Google Scholar 

  7. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Article  CAS  Google Scholar 

  8. S. Ghazali, M. M. Hossain, A. Khan, M. Y. Khan, and M. Hasan, J. Electron. Mater. 46, 331 (2017).

    Article  CAS  Google Scholar 

  9. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11 (2006).

    Article  CAS  Google Scholar 

  10. S. Tian, J. Liu, T. Zhu, and W. Knoll, Chem. Mater. 16, 4103 (2004).

    Article  CAS  Google Scholar 

  11. Y. Bu and Z. Chen, ACS Appl. Mater. Interfaces 6, 17589 (2014).

    Article  CAS  Google Scholar 

  12. V. K. Gupta, M. L. Yola, T. Eren, and N. Atar, Sens. Actuators, B 218, 215 (2015).

    Article  CAS  Google Scholar 

  13. Y. Yang and J. Luan, Molecules 17, 2752 (2012).

    Article  CAS  Google Scholar 

  14. F. Wang and S. X. Min, Chin. Chem. Lett. 18, 1273 (2007).

    Article  Google Scholar 

  15. S. Chen and G. Sun, ACS Appl. Mater. Interfaces 5, 6473 (2013).

    Article  CAS  Google Scholar 

  16. R. Gottam, P. Srinivasan, D. Duc. La, and S. V. Bhosale, New J. Chem. 41, 14595 (2017).

    Article  CAS  Google Scholar 

  17. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001).

    Article  CAS  Google Scholar 

  18. Y. Shirota and H. Kageyama, Chem. Rev. 107, 953 (2007).

    Article  CAS  Google Scholar 

  19. P. Xiong, L. Wang, X. Sun, B. Xu, and X. Wang, Ind. Eng. Chem. Res. 52, 10105 (2013).

    Article  CAS  Google Scholar 

  20. Y. Ide, M. Matsuoka, and M. Ogawa, J. Am. Chem. Soc. 132, 16762 (2010).

    Article  CAS  Google Scholar 

  21. J. A. Smith, M. Josowicz, and J. Janata, Phys. Chem. Chem. Phys. 7, 3614 (2005).

    Article  Google Scholar 

  22. W. Jin, L. Han, X. Han, B. Zhang, and P. Xu, RSC Adv. 6, 81983 (2016).

  23. M. R. Karim, J. H. Yeum, M. S. Lee, and K. T. Lim, React. Funct. Polym. 68, 1371 (2008).

    Article  CAS  Google Scholar 

  24. V. M. Mzendaa, S. A. Goodmana, F. A. Aureta, and L. C. Prinsloob, Synth. Met. 127, 279 (2002).

    Article  Google Scholar 

  25. M. O. Ansari, S. P. Ansari, S. K. Yadav, T. Anwer, M. H. Cho, and F. Mohammad, J. Ind. Eng. Chem. 20, 2010 (2014).

    Article  CAS  Google Scholar 

  26. A. Arzak, J. I. Eguiazábal, and J. Nazábal, Polym. Eng. Sci. 31, 586 (1991).

    Article  CAS  Google Scholar 

  27. E. M. Sullivan, Y. J. Oh, R. A. Gerhardt, B. Wang, and K. Kalaitzidou, J. Polym. Res. 21, 563 (2014).

    Article  Google Scholar 

  28. M. A. Islam, M. E. Khan, M. M. Hussain, and M. Hasan, Prog. Nat. Sci.: Mater. Int. 26, 341 (2016).

    Article  CAS  Google Scholar 

  29. G. K. R. Senadeera, T. Kitamura, and Y. Wada, J. Photochem. Photobiol., A 164, 61 (2004).

    Article  CAS  Google Scholar 

  30. O. Kwon and M. L. Mc Kee, J. Phys. Chem. B 104, 1686 (2000).

    Article  CAS  Google Scholar 

  31. O. Abdulrazzaq, S. E. Bourdo, V. Saini, F. Watanabe, B. Barnes, A. Ghosh, and A. S. Biris, RSC Adv. 5, 33 (2015).

  32. H. Seema, K. C. Kemp, V. Chandra, and K. S. Kim, Nanotechnology 23, 355705 (2012).

    Article  Google Scholar 

  33. M. M. Hossain, H. Shima, S. Son, and J. R. Hahn, RSC Adv. 6, 71450 (2016).

  34. M. M. Hossain, H. Shima, M. A. Islam, M. Hasan, and M. Lee, RSC Adv. 6, 4170 (2016).

  35. H. Shima, M. M. Hossain, I. Lee, S. Son, and J. R. Hahn, Mater. Chem. Phys. 185, 73 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha-KSA, for funding this work through General Research Project under grant number (R.G.P. 1/144/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudassir Hasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudassir Hasan, Hossain, M.M., Al Mesfer, M.K. et al. Polyaniline–Graphene–Gold Nanocomposite for Visible Light Active Photo Catalysis and Enhanced Thermal Electrical Stability. Polym. Sci. Ser. B 61, 653–662 (2019). https://doi.org/10.1134/S1560090419050051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419050051

Navigation