Skip to main content
Log in

Synthesis and Evaluation of Physicochemical Properties of Grewia Optiva Fiber Graft Copolymers

  • MODIFICATION OF POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

In this manuscript, surface modification of pretreated Grewia optiva fiber was carried out by graft copolymerization of methylmethacrylate/acrylonitrile and binary monomer mixture of acrylonitrile/acrylic acid and methyl methacrylate/acrylic acid using ceric ammonium nitrate/HNO3 as an initiator system under different reaction conditions. The single and binary monomer mixture grafting has been carried out in acidic medium in order to prevent hydrolysis of cellulosic fibers. Various reaction parameters such as reaction time, temperature, initiator concentration and monomer concentration have been optimized in order to get maximum percent grafting. The graft copolymers thus synthesized were characterized by thermal gravimetric analysis, Fourier transformer infrared spectroscopy and morphology of the grafted fiber surface was studied by scanning electron microscopy techniques. The water absorbance and chemical resistance behavior of raw and other grafted samples were also studied and were presented in a well defined and in a comparative manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. Thomas and C. Christophe, Handbook of Biopolymer-Based Materials: From Blends and Composites to Gels and Complex Networks (Wiley-VCH Verlag, GmbH and Co., Weinheim, 2013).

    Book  Google Scholar 

  2. S. Kalia, Cellulose Fibers: Bio- and Nano-Polymer Composites (Springer-Verlag, Berlin; Heidelberg, 2011).

    Book  Google Scholar 

  3. D. Klemm, H. P. Schmauder, and T. Heinze, “Cellulose,” in Biopolymers: Polysaccharides 2, Ed. by S. DeBaets, E. J. Vandamme, and A. Steinbüchel (Wiley, Weinheim, 2002), Vol. 6.

    Google Scholar 

  4. M. Ott, M. Graf, H. Herbert, and M. Biesalski, Polymer 98, 505 (2016).

    Article  CAS  Google Scholar 

  5. A. Avila, K. Bierbrauer, G. Pucci, M. Lopez Gonzalez, and M. Strumia. J. Food Eng. 109, 752 (2012).

    Article  CAS  Google Scholar 

  6. J. Cruz and R. Fangueiro, Procedia Eng. 155, 285 (2016) .

    Article  CAS  Google Scholar 

  7. O. Roy, M. Semsarilar, J. T. Guthrie, and S. Perrier, Chem. Soc. Rev. 38, 2046 (2009).

    Article  CAS  Google Scholar 

  8. T. Biranchinarayan and C. R. Routary, Chem. Sci. Rev. Lett. 3, 74 (2014).

    Google Scholar 

  9. R. K. Sharma and S. Kumar, J. Chem. Sci. 3, 73 (2013).

    Google Scholar 

  10. A. S. Singha and A. K. Rana, Bull. Mater. Sci. 35, 1099 (2012).

    Article  CAS  Google Scholar 

  11. A. Bhattacharya and B. N. Misra, Prog. Polym. Sci. 29, 767 (2014).

    Article  CAS  Google Scholar 

  12. M. K. Thakur, R. K. Gupta, and V. K. Thakur, Carbohydr. Polym. 111, 849 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. M. R. Sanjay, S. Suchart, J. Parameswaranpillai, J Mohammad, P Catalin, and A. Khan, Carbohydr. Polym. 207, 108 (2019).

    Article  CAS  Google Scholar 

  14. A. S. Singha and A. K. Rana, Iran. Polym. J. 20, 913 (2011).

    CAS  Google Scholar 

  15. M. K. Munmaya, J. Appl. Polym. Sci. 27, 2403 (2003).

    Google Scholar 

  16. D. T. Mangesh, D. R. Gupta, and S. P. Valia, Int. Res. J. Eng. Technol. 2, 287 (2015).

    Google Scholar 

  17. A. S. Singha and A. K. Rana, Bioresources 7, 2019 (2012).

    Article  CAS  Google Scholar 

  18. M. K. Zahran, Arabian J. Chem. 9, 408 (2016).

    Article  CAS  Google Scholar 

  19. A. S. Singha and R. K. Rana, J. Appl. Polym. Sci. 12, 401 (2011).

    Google Scholar 

  20. V. K. Thakur, A. S. Singha, and M. K. Thakur, J. Polym. Sci. Environ. 20, 164 (2011).

    Article  CAS  Google Scholar 

  21. V. K. Thakur, M. K. Thakur, and R. K. Gupta, Carbohydr. Polym. 104, 87 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. V. K. Gupta, D. Pathania, B. Priya, A. S. Singha, and G. Sharma, Front. Chem. 11, 59 (2014).

    Google Scholar 

  23. G. S. Chauhan, S. K. Dhiman, L. K. Guleria, and I. Kaur, J. Appl. Polym. Sci. 83, 1490 (2002).

    Article  CAS  Google Scholar 

  24. H. M. Abd, E Salam, S. M. Sayyh, and E. H. M. Kamal, Beni-Suef Univ. J. Basic Appl. Sci. 3, 193 (2014).

    Google Scholar 

  25. B. S. Kaith and S. Kalia, Int. J. Polym. Anal. Charact. 12, 401(2007).

    Article  CAS  Google Scholar 

  26. A. S. Singha and A. K. Rana, J. App. Polym. Sci. 124, 2473 (2012).

    CAS  Google Scholar 

  27. A. S. Singha and V. K. Thakur, J. Chem. Sci. 6, 71 (2009).

    CAS  Google Scholar 

  28. V. K. Thakur and A. S. Singha, Polym.-Plast. Technol. Eng. 49, 694 (2010).

    Article  CAS  Google Scholar 

  29. A. S. Singha and V. K. Thakur, Polym.-Plast. Technol. Eng. 48, 201 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, A.K., Sharma, R. & Singha, A.S. Synthesis and Evaluation of Physicochemical Properties of Grewia Optiva Fiber Graft Copolymers. Polym. Sci. Ser. B 61, 409–420 (2019). https://doi.org/10.1134/S1560090419040109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419040109

Navigation