Skip to main content
Log in

Effects of CuO and Oxidant on the Morphology and Conducting Properties of PANI:CuO Hybrid Nanocomposites for Humidity Sensor Application

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

PANI:CuO hybrid nanocomposites at different wt ratio of ammonium per sulfate are prepared by the in-situ chemical polymerization method. Morphology and bonding changes are observed in pure PANI and PANI:CuO:APSx hybrid nanocomposites. The structural changes are observed in the PANI:CuO hybrid nanocomposites due to the induction of CuO in the hybrid from XRD pattern. FTIR study confirms the presence of dopant molecules in the molecular structure. UV–Vis spectra reveal the presence of two absorption peaks at 236 and 358 nm due to π–π* transition of PANI and the shifting of 358 nm PANI peak to 484 nm in the formed PANI:CuO (0.1 M of APS) nanocomposite. The PL spectra indicate the occurrence of a broad emission peak at 395 nm in the polymer composites. The pellets are made using hydraulic press under uniform pressure. These pellets are investigated by humidity sensing. Relative humidity sensing response shows the reverse behavior. Resistance is decreases with the increase in relative humidity range between 5 and 75%RH. However, the sensitivity is found to be dependent on the type of dopant anions. The composite based sensors show better sensitivity, linearity, and quicker response time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A.G. MacDiarmid, Curr. Appl. Phys. 1, 269 (2001).

    Article  Google Scholar 

  2. S. Koul, R. Chandra, and S. K. Dhawan, Sens. Actuators, B 75, 151 (2001).

    Article  CAS  Google Scholar 

  3. A. Elmansouri. A. Outzourhit, A. Lachkar, N. Hadik, A. Abouelaoualim, M. E. Achour, A. Oueriagli, and E. L. Ameziane, Synth. Met. 159, 292 (2009).

    Article  CAS  Google Scholar 

  4. M. V. Fuke, A. Vijayan, M. Kulkarni, R. Hawaldar, and R. Aiyer, Sens. Actuators, B 76, 1035 (2008).

    CAS  Google Scholar 

  5. B. I. Nandapure, S. B. Kondawar, M. Y. Salunkhe, and A. I. Nandapure, Adv. Mater. Lett. 4, 134 (2013).

    Article  CAS  Google Scholar 

  6. S. Kondawar, R. Mahore, A. Dahegaonkar, and S. Agrawal, Adv. Appl. Sci. 2, 397 (2011).

    Google Scholar 

  7. Z. Liu, W. Guo, D. Fu, and W. Chen, Synth. Met. 156, 414 (2006).

    Article  CAS  Google Scholar 

  8. S. Ameen, M. S Akhtar, S. G. Ansari, O. B. Yang, and H. S Shin, Superlattices Microstruct. 46, 872 (2009).

    Article  CAS  Google Scholar 

  9. S. Goswamia, U. N. Maiti, S. Maiti, M. K. Mitra, and K. K. Chattopadhyay, Mater. Chem. Phys. 138, 319 (2013).

    Article  CAS  Google Scholar 

  10. S. Sarmah and A. Kumar, Bull. Mater. Sci. 36, 31 (2013).

    Article  CAS  Google Scholar 

  11. M. M. Rahman Khan, S. Cagliero, A. Agostino, M. Beagum, C. Plapcianu, and M. Truccato, Supercond. Sci. Technol. 22, 085011 (2009).

    Article  CAS  Google Scholar 

  12. A. Cruccolini, R. Narducci, and R. Palombari, Sens. Actuators, B 98, 227 (2004).

    Article  CAS  Google Scholar 

  13. N. Yamazoe and Y. Shimizu, Sens. Actuators 10, 379 (1986).

    Article  CAS  Google Scholar 

  14. H. Arai and T. Seiyama, “Humidity Control,” in Sensors: A Comprehensive Survey, Ed. by W. Göpel, J. Hesse, and J. N. Zemel (VCH, Weinheim, 1992), Vol. 3, pp. 981-1012.

    Google Scholar 

  15. G. J. C. Verdijck, H. A. Preisig, and G. Van Straten, J. Process Control 15, 235 (2005).

    Article  CAS  Google Scholar 

  16. C. Chen, Biosyst. Eng. 88, 231 (2004).

    Article  Google Scholar 

  17. M. Pelino, C. Cantalini, and M. Faccio, Act. Passive Electron. Compon. 16, 69 (1994).

    Article  Google Scholar 

  18. K. Ogura, T. Saino, M. Nakayama, and H. Shiigi, J. Mater. Chem. 7, 2363 (1997).

    Article  CAS  Google Scholar 

  19. M. L. Singla, S. Awasthi, and A. Srivastava, Sens. Actuators, B 127, 580 (2007).

    Article  CAS  Google Scholar 

  20. C. Cantalinic and M. Pelino, J. Am. Ceram. Soc. 75, 546 (1992).

    Article  Google Scholar 

  21. M. Li and Y. Chen, Sens. Actuators, B 32, 83 (1996).

    Article  Google Scholar 

  22. H. Yagi and M. Nakata, J. Ceram. Soc. Jpn. 100, 152 (1992).

    Article  CAS  Google Scholar 

  23. P. Chauhan, S. Annapoorni, and S. K. Trikha, Thin Solid Films 346, 266 (1999).

    Article  CAS  Google Scholar 

  24. P. R. Somani, R. Marimuthu, U. P. Mulik, S. R. Sainkar, and D. P. Amalnerkar, Synth. Met. 106, 45 (1999).

    Article  CAS  Google Scholar 

  25. G. Li, C. Zhang, and H. Peng, Macromol. Rapid Commun. 29, 63 (2008).

    Article  CAS  Google Scholar 

  26. G. L. Teoh, K. Y. Liew, and W. A. K. Mahmood, Mater. Lett. 61, 4947 (2007).

    Article  CAS  Google Scholar 

  27. D. K. Bandgar, G. D. Khuspe, R. C. Pawar, C. S. Lee, and V. B. Patil, Appl. Nanosci. 4, 27 (2014).

    Article  CAS  Google Scholar 

  28. G. D. Khuspe, S. T. Navale, M. A. Chougule, and V. B. Patil, Electron. Mater. Lett. 10, 191 (2014).

    Article  CAS  Google Scholar 

  29. S. Raja and M. Deepa, Ind. J. Adv. Chem. Sci. 3, 198 (2015).

    CAS  Google Scholar 

  30. S. Ivanov, P. Mokreva, V. Tsakova, and L. Terlemezyan, Thin Solid Films 441, 44 (2003).

    Article  CAS  Google Scholar 

  31. T. Abdiryim, Z. Xiao-Gang, and R. Jamal, Mater. Chem. Phys. 90, 367 (2005).

    Article  CAS  Google Scholar 

  32. A. S. Lanje, S. J. Sharma, R. B. Pode, and R. S. Ningthoujam, Adv. Appl. Sci. Res. 1, 36 (2010).

    CAS  Google Scholar 

  33. Y. Aparna, K. Venkateswara Rao, and P. Srinivasa Subbarao, Int. Proc. Chem., Biol. Environ. Eng. 48, 156 (2012).

    CAS  Google Scholar 

  34. D. M. Jundale, S. T. Navale, G. D. Khuspe, D. S. Dalavi, P. S. Patil, and V. B. Patil, J. Mater. Sci.: Mater. Electron. 24, 3526 (2013).

    CAS  Google Scholar 

  35. N. Dutta Gupta, D. Banerjee, N. S. Das, and K. K. Chattopadhyay, Colloids Surf., A 385, 55 (2011).

    Article  CAS  Google Scholar 

  36. A. S. Lanje1, S. J. Sharma, R. B. Pode, and R. S. Ningthoujam, Adv. Appl. Sci. Res. 1, 36 (2010).

  37. X. Lu, W. Zhang, C. Wang, T. C. Wen, and Y. Wei, Prog. Polym. Sci. 36, 671 (2011).

    Article  CAS  Google Scholar 

  38. B. H. Kim, J. H. Jung, S. H. Hong, J. Joo, and A. J. Epstein, Macromolecules 35, 1419 (2002).

    Article  CAS  Google Scholar 

  39. Y. Long, Z. Chen, J. L. Duvail, Z. Zhang, and M. Wan, Phys. B 370, 121 (2005).

    Article  CAS  Google Scholar 

  40. S. K. Shukla, V. Minakshi, A. Bharadavaja, A. Shekhar, and A. Tiwari, Adv. Mater. Lett. 3, 421 (2012).

    Article  CAS  Google Scholar 

  41. B. C. Yadav, R. Srivastava, C. D. Dwivedi, and P. Pramanik, Sens. Actuators, B 131, 216 (2008).

    Article  CAS  Google Scholar 

  42. M. V. Kulkarni, A. K. Viswanath, and P. K. Khanna, J. Appl. Polym. Sci. 99, 812 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ashokan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashokan, S., Jayamurugan, P. & Ponnuswamy, V. Effects of CuO and Oxidant on the Morphology and Conducting Properties of PANI:CuO Hybrid Nanocomposites for Humidity Sensor Application. Polym. Sci. Ser. B 61, 86–97 (2019). https://doi.org/10.1134/S1560090419010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419010020

Navigation