Skip to main content
Log in

Probe-Absorption Spectrum of a Polar Quantum Emitter in a Squeezed Finite-Bandwidth Vacuum

  • PHYSICS OF SOLID STATE AND CONDENSED MATTER
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A study of the absorption spectrum of a weak-probe beam irradiating a two-level quantum emitter with broken inversion symmetry driven by external monochromatic high-frequency electromagnetic (e.g. laser) field and damped by squeezed vacuum reservoir with finite bandwidth was carried out for the case of the squeezed vacuum source being represented by a non-degenerate parametric oscillator below threshold. It was shown that this atom-driving-field system can either amplify or absorb weak probe electromagnetic radiation beam of much lower frequency than the frequency of the driving field. The shape of the absorption and amplification spectra can be controlled by the degree of the squeezed vacuum source degeneration and by the phase of the squeezing, while the switching between these two modes of operation can only be controlled by the phase of the squeezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. A. Kovarskii, “Quantum processes in biological molecules. Enzyme catalysis,” Phys. Usp. 42, 797–815 (1999). https://doi.org/10.1070/PU1999v042n08ABEH000480

    Article  ADS  Google Scholar 

  2. O. V. Kibis, G. Ya. Slepyan, S. A. Maksimenko, and A. Hoffmann, “Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry,” Phys. Rev. Lett. 102, 023601 (2009). https://doi.org/10.1103/PhysRevLett.102.023601

    Article  ADS  Google Scholar 

  3. A. V. Soldatov, “Laser frequency down-conversion by means of a monochromatically driven two-level system,” Mod. Phys. Lett. B 30, 1650331 (2016). https://doi.org/10.1142/S0217984916503310

    Article  ADS  Google Scholar 

  4. A. V. Soldatov, “Broadband EM radiation amplification by means of a monochromatically driven two-level system,” Mod. Phys. Lett. B 34, 1750027 (2017). https://doi.org/10.1142/S0217984917500270

    Article  Google Scholar 

  5. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Fluorescence in a quantum system with violated symmetry,” Mosc. Univ. Phys. Bull. 73, 154–161 (2018). https://doi.org/10.3103/S0027134918020029

    Article  ADS  Google Scholar 

  6. N. N. Bogolyubov, Jr. and A. V. Soldatov, “EM field frequency down-conversion in a quantum two-level system damped by squeezed vacuum reservoir,” Phys. Part. Nucl. 51, 762–765 (2020). https://doi.org/10.1134/S1063779620040164

    Article  Google Scholar 

  7. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Electromagnetic radiation amplification by means of a driven two-level system damped by broadband squeezed vacuum reservoir,” J. Phys.: Conf. Ser. 1560, 012001 (2020). https://doi.org/10.1088/1742-6596/1560/1/012001

    Article  Google Scholar 

  8. M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984). https://doi.org/10.1103/PhysRevA.30.1386

    Article  ADS  Google Scholar 

  9. R. R. Puri, Mathematical Methods of Quantum Optics, Vol. 79 of Springer Series in Optical Sciences (Springer, Berlin, 2001).

  10. P. D. Drummond and M. D. Reid, “Correlations in nondegenerate parametric oscillation. II. Below threshold results,” Phys. Rev. A 41, 3930–3949 (1990). https://doi.org/10.1103/PhysRevA.41.3930

    Article  ADS  Google Scholar 

  11. P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation,” Opt. Acta 27, 321–335 (1980). https://doi.org/10.1080/713820226

    Article  ADS  Google Scholar 

  12. P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation,” Opt. Acta 28, 211–225 (1981). https://doi.org/10.1080/713820531

    Article  ADS  Google Scholar 

  13. M. Legua and L. M. Sánchez-Ruiz, “Cauchy principal value contour integral with applications,” Entropy 19, 215–223 (2017). https://doi.org/10.3390/e19050215

    Article  ADS  Google Scholar 

  14. R. Tanaś, Z. Ficek, A. Messikh, and T. El-Shahat, “Two-level atom in a squeezed vacuum with finite bandwidth,” J. Mod. Opt. 45, 1859–1883 (1998). https://doi.org/10.1080/09500349808231707

    Article  ADS  Google Scholar 

  15. H. Carmichael, An Open Systems Approach to Quantum Optics, Lect. Notes Phys. 18, 1 (1993).

    Book  Google Scholar 

  16. Z. Ficek, J. Seke, A. V. Soldatov, and G. Adam, “Fluorescence spectrum of a two-level atom driven by a multiple modulated field,” Phys. Rev. A 64, 013813 (2001). https://doi.org/10.1103/PhysRevA.64.013813

    Article  ADS  Google Scholar 

  17. M. A. Antón, S. Maede-Razavi, F. Carreño, I. Thanopulos, and E. Paspalakis, “Optical and microwave control of resonance fluorescence and squeezing spectra in a polar molecule,” Phys. Rev. A 96, 063812 (2017). https://doi.org/10.1103/PhysRevA.96.063812

    Article  ADS  Google Scholar 

  18. T. F. Gallagher, Rydberg Atoms (New York, Cambridge Univ. Press, 1994).

    Book  Google Scholar 

  19. N. Šibalić and C. S. Adams, Rydberg Physics, Physics World Discovery (IOP, Bristol, UK, 2018). https://doi.org/10.1088/978-0-7503-1635-4

  20. M. Saffman and T. G. Walker, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010). https://doi.org/10.1103/RevModPhys.82.2313

    Article  ADS  Google Scholar 

  21. C. H. H. Schulte, J. Hansom, A. E. Jones, C. Matthiesen, C. le Gall, and M. Atatüre, “Quadrature squeezed photons from a two-level system,” Nature (London, U.K.) 525, 222–225 (2015). https://doi.org/10.1038/nature14868

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Bogolyubov Jr. or A. V. Soldatov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogolyubov, N.N., Soldatov, A.V. Probe-Absorption Spectrum of a Polar Quantum Emitter in a Squeezed Finite-Bandwidth Vacuum. Phys. Part. Nuclei Lett. 19, 58–65 (2022). https://doi.org/10.1134/S1547477122010046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477122010046

Keywords:

Navigation