Skip to main content
Log in

Quantum Squeezing of the Field of a Single-Atom Laser under Conditions of a Variable Coupling Constant

  • QUANTUM OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A nonstationary regime of squeezed-light generation by a single-atom laser is investigated. Dependences of the quantum-squeezing parameter and radiation intensity on modulation frequency of the atom–field coupling constant are obtained. It is demonstrated that a resonance appears at the modulation frequency equal to twice the average coupling constant, which leads to a more efficient quantum squeezing in a nonstationary harmonic regime than in the case of a stationary regime for the same values of the relaxation and pump parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Merimaa, T. Lindvall, I. Tittonen, and E. Ikonen, J. Opt. Soc. Am. B 20, 273 (2003).

    Article  ADS  Google Scholar 

  2. J. Vanier, Appl. Phys. B 81, 421 (2005).

    Article  ADS  Google Scholar 

  3. M. Stahler, R. Wynands, S. Knappe, et al., Opt. Lett. 27, 1472 (2002).

    Article  ADS  Google Scholar 

  4. A. Akulshin, A. Celikov, and V. Velichansky, Opt. Commun. 84, 139 (1991).

    Article  ADS  Google Scholar 

  5. M. D. Lucin, Rev. Mod. Phys. 75, 457 (2003).

    Article  ADS  Google Scholar 

  6. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  7. S. Ya. Kilin, Phys. Usp. 42, 435 (1999).

    Article  ADS  Google Scholar 

  8. Yu. M. Golubev and I. V. Sokolov, Sov. Phys. JETP 60, 234 (1984).

    Google Scholar 

  9. Y. Yamamoto, S. Mashida, and O. Nilson, Phys. Rev. A 34, 4025 (1986).

    Article  ADS  Google Scholar 

  10. C. Benkert, M. O. Scully, J. Bergou, et al., Phys. Rev. A 41, 2756 (1990).

    Article  ADS  Google Scholar 

  11. V. A. Reshetov, E. N. Popov, and I. V. Yevseyev, Laser Phys. Lett. 7, 218 (2010).

    Article  ADS  Google Scholar 

  12. M. I. Kolobov, L. Davidovich, E. Giacobino, and C. Fabre, Phys. Rev. A 47, 1431 (1993).

    Article  ADS  Google Scholar 

  13. A. V. Kozlovskii, J. Exp. Theor. Phys. 77, 393 (1993).

    ADS  Google Scholar 

  14. A. Eschmann and C. W. Gardiner, Phys. Rev. A 54, 3373 (1996).

    Article  ADS  Google Scholar 

  15. M. A. Marte, H. Ritsch, and D. F. Walls, Phys. Rev. Lett. 61, 1093 (1988).

    Article  ADS  Google Scholar 

  16. T. A. B. Kennedy and D. F. Walls, Phys. Rev. A 40, 6366 (1989).

    Article  ADS  Google Scholar 

  17. J. McKeever, A. Boca, A. D. Boozer, et al., Nature (London, U.K.) 425, 268 (2003).

    Article  ADS  Google Scholar 

  18. F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, Nat. Phys. 6, 350 (2010).

    Article  Google Scholar 

  19. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, Opt. Express 17, 15975 (2009).

    Article  ADS  Google Scholar 

  20. A. V. Kozlovskii and A. N. Oraevskii, J. Exp. Theor. Phys. 88, 668 (1999).

    ADS  Google Scholar 

  21. N. V. Larionov, K. A. Barantsev, and E. N. Popov, Nauch.-Tekh. Vedom. SPbPU, Fiz.-Mat. Nauki 11 (4), 104 (2018).

    Google Scholar 

  22. D. Heinert, K. Craig, H. Grote, et al., Rhys. Rev. D 90, 042001 (2014).

    Article  ADS  Google Scholar 

  23. N. V. Larionov and M. I. Kolobov, Phys. Rev. A 88, 013843 (2013).

    Article  ADS  Google Scholar 

  24. E. N. Popov and N. V. Larionov, Proc. SPIE 9917, 1 (2016).

    Google Scholar 

  25. N. V. Larionov and M. I. Kolobov, Phys. Rev. A 84, 055801 (2011).

    Article  ADS  Google Scholar 

  26. T. B. Karlovich and S. Ya. Kilin, Opt. Spectrosc. 91, 343 (2001).

    Article  ADS  Google Scholar 

  27. T. B. Karlovich and S. Ya. Kilin, Opt. Spectrosc. 103, 280 (2007).

    Article  ADS  Google Scholar 

  28. S. Ya. Kilin and A. B. Mikhalychev, Phys. Rev. A 85, 063817 (2012).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the Russian Foundation for Basic Research, project no. 18-32-00250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Popov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Shumai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrikova, V.A., Khachatryan, R.A., Barantsev, K.A. et al. Quantum Squeezing of the Field of a Single-Atom Laser under Conditions of a Variable Coupling Constant. Opt. Spectrosc. 127, 1070–1074 (2019). https://doi.org/10.1134/S0030400X19120051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19120051

Keywords:

Navigation