Skip to main content
Log in

On Universal Eigenvalues of the Casimir Operator

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Motivated by the universal knot polynomials in the gauge Chern–Simons theory, we show that the values of the second Casimir operator on an arbitrary power of Cartan product of \({{X}_{2}}\) and the adjoint representations of simple Lie algebras can be represented in a universal form. We show that it complies with the Perelomov–Popov formula for the generating function for the Casimir spectra. We discuss the phenomenon of non-zero universal values of the Casimir operator on zero representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note, that for \({{G}_{2}}\) algebra the \({{\omega }_{2}}\) weight corresponds to the long root.

  2. In [18] the Killing form is defined as \({\text{Tr}}({{\hat {X}}^{a}},{{\hat {X}}^{b}})\) in the fundamental representation, while our normalization (so called Cartan–Killing normalization) corresponds to the Killing form, defined as \({\text{Tr}}(ad{{\hat {X}}^{a}},ad{{\hat {X}}^{b}})\), i.e. in the adjoint representation.

REFERENCES

  1. P. Vogel, “The universal lie algebra”, Preprint (1999). https://webusers.imj-prg.fr/~pierre.vogel/grenoble-99b.pdf.

  2. P. Vogel, J. Pure Appl. Algebra, no. 6, 1292–1339 (2011);

  3. Preprint (1995). www.math.jussieu.fr/~vogel/diagrams.pdf.

  4. J. M. Landsberg and L. Manivel, “A universal dimension formula for complex simple lie algebras,” Adv. Math. 201, 379–407 (2006).

    Article  MathSciNet  Google Scholar 

  5. R. L. Mkrtchyan, A. N. Sergeev, and A. P. Veselov, “Casimir eigenvalues for universal Lie algebra,” J. Math. Phys. 53, 102106 (2012); arXiv: 1105.0115.

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Mkrtchyan and A. Veselov, “On duality and negative dimensions in the theory of lie groups and symmetric spaces,” J. Math. Phys. 52, 083514 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. L. Mkrtchyan, “Nonperturbative universal Chern-Simons theory,” J. High Energy Phys. 1309, 54 (2013); arXiv: 1302.1507.

    Article  ADS  MathSciNet  Google Scholar 

  8. H. M. Khudaverdian and R. L. Mkrtchyan, “Universal volume of groups and anomaly of Vogel’s symmetry,” Lett. Math. Phys. 107, 1491–1514 (2017); arXiv: 1602.00337. https://doi.org/10.1007/s11005-017-0949-8

  9. R. L. Mkrtchyan, “Partition function of Chern–Simons theory as renormalized q-dimension,” J. Geom. Phys. 129, 186–191 (2018); arXiv: 1709.03261.

  10. B. W. Westbury, “Extending and quantising the Vogel plane,” arXiv: 1510.08307.

  11. A. Mironov, R. Mkrtchyan, and A. Morozov, “On universal knot polynomials,” J. High Energy Phys. 1602, 078 (2016); arxiv:1510.05884.

  12. A. Mironov and A. Morozov, “Universal Racah matrices and adjoint knot polynomials I. Arborescent knots,” Phys. Lett. B 755, 47–57 (2016); arXiv: 1511.09077.

  13. R. L. Mkrtchyan, “On universal quantum dimensions,” Nucl. Phys. B 921, 236–249 (2017); arxiv:1610.09910.

  14. M. Rosso and V. J. Jones, J. Knot Theory Ramif. 2, 97–112 (1993).

    Article  Google Scholar 

  15. R. Feger and T. W. Kephart, “LieART mathematica application for lie algebras and representation theory,” arXiv: 1206.6379v2.

  16. A. M. Cohen and R. de Man, “Computational evidence for Deligne’s conjecture regarding exceptional lie groups,” C. R. Acad. Sci., Ser. 1: Math. 322, 427–432 (1996).

    MATH  Google Scholar 

  17. M. Y. Avetisyan and R. L. Mkrtchyan, “X2 series of universal quantum dimensions,” arXiv: 1812.07914.

  18. P. Deligne, “La serie exceptionnelle des groupes de Lie,” C. R. Acad. Sci. Paris, Ser. 1 322, 321–326 (1996).

    MATH  Google Scholar 

  19. R. L. Mkrtchyan and A. P. Veselov, “Universality in Chern-Simons theory,” J. High Energy Phys. 1208, 153 (2012); arXiv: 1203.0766.

    Article  ADS  MathSciNet  Google Scholar 

  20. A. M. Perelomov and V. S. Popov, Math. USSR, Izv. 2, 1313 (1968).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Professor R. Mkrtchyan for his valuable guidance and productive discussions. This work was fulfilled within the Regional Doctoral Program on Theoretical and Experimental Particle Physics sponsored by VolkswagenStiftung and was partially supported by the Science Committee of the Ministry of Science and Education of the Republic of Armenia under contract 18T-1C229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Avetisyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avetisyan, M.Y. On Universal Eigenvalues of the Casimir Operator. Phys. Part. Nuclei Lett. 17, 779–783 (2020). https://doi.org/10.1134/S1547477120050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120050039

Navigation