Skip to main content
Log in

Radiation-Induced Mutagenesis in Mammalian Cells after Exposure to Accelerated Ions with Different LET

  • RADIOBIOLOGY, ECOLOGY AND NUCLEAR MEDICINE
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The mutagenic effect of accelerated heavy charged particles on the Chinese hamster V79 cell line is studied. The induction of HPRT mutations in irradiated cells for a long expression time (up to 45 days) after exposure to radiation with different LET are analyzed. The maximum yield of mutant clones is observed at different expression times, depending on the characteristics of ionizing radiation; in this case, the position of the maximum is shifted toward later time intervals with increasing LET of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. A. Simpson, “Elemental and isotopic composition of the galactic cosmic rays,” Ann. Rev. Nucl. Part. Sci. 33, 323–382 (1983).

    Article  ADS  Google Scholar 

  2. D. K. Ebner and T. Kamada, “The emerging role of carbon-ion radiotherapy,” Front. Oncol. 6, 6–11 (2016).

    Article  Google Scholar 

  3. M. Jermann, “Particle therapy statistics in 2014,” Int. J. Part. Ther. 2, 50–54 (2015).

    Article  Google Scholar 

  4. J. Kiefer, “Mutagenic effects of heavy charged particles,” J. Radiat. Res. 43, S21–S25 (2002).

    Article  Google Scholar 

  5. K. Suzuki, M. Ojima, S. Kodama, and M. Watanabe, “Radiation-induced DNA damage and delayed induced genomic instability,” Oncogene 22, 6988–6993 (2003).

    Article  Google Scholar 

  6. L. E. Smith, S. Nagar, G. J. Kim, and W. F. Morgan, “Radiation-induced genomic instability: radiation quality and dose response,” Health Phys. 85, 23–29 (2003).

    Article  Google Scholar 

  7. C. L. Limoli, B. Ponnaiya, J. J. Corcoran, E. Giedzinski, M. I. Kaplan, A. Hartmann, and W. F. Morgan, “Genomic instability induced by high and low let ionizing radiation,” Adv. Space Res. 25, 2107–2117 (2000).

    Article  ADS  Google Scholar 

  8. I. M. Rosendahl, C. Baumstark-Khan, and H. Rink, “Mutation induction in mammalian cells by accelerated heavy ions,” Adv. Space Res. 36, 1701–1709 (2005).

    Article  ADS  Google Scholar 

  9. T. Kranert, E. Schneider, and J. Kiefer, “Mutation induction in V79 chinese hamster cells by very heavy ions,” Int. J. Radiat. Biol. 58, 975–987 (1990).

    Article  Google Scholar 

  10. P. Schmidt and J. Kiefer, “Deletion-pattern analysis of α-particle and X-ray induced mutations at the HPRT locus of V79 chinese hamster cells,” Mutat. Res. Mol. Mech. Mutagen 421, 149–161 (1998).

    Article  Google Scholar 

  11. J. B. Little, H. Nagasawa, T. Pfenning, and H. Vetrovs, “Radiation-induced genomic instability: delayed mutagenic and cytogenetic effects of X rays and alpha particles,” Radiat. Res. 148, 299–307 (1997).

    Article  ADS  Google Scholar 

  12. J. Kiefer, M. Kohlpoth, and M. Kuntze, “Mutation induction by continuous low dose rate gamma irradiation in human cells,” Int. Congr. Ser. 1236, 255–263 (2002).

    Article  Google Scholar 

  13. M. Suzuki, C. Tsuruoka, T. Kanai, T. Kato, F. Yatagai, and M. Watanabe, “Cellular and molecular effects for mutation induction in normal human cells irradiated with accelerated neon ions,” Mutat. Res. Mol. Mech. Mutagen 594, 86–92 (2006).

    Article  Google Scholar 

  14. U. Stoll, B. Barth, N. Scheerer, E. Schneider, and J. Kiefer, “HPRT mutations in V79 chinese hamster cells induced by accelerated Ni, Au and Pb ions,” Int. J. Radiat. Biol. 70, 15–22 (1996).

    Article  Google Scholar 

  15. U. Stoll, A. Schmidt, E. Schneider, and J. Kiefer, “Killing and mutation of chinese hamster V79 cells exposed to accelerated oxygen and neon ions,” Radiat. Res. 142, 288 (1995).

    Article  ADS  Google Scholar 

  16. M. Suzuki, M. Watanabe, T. Kanai, Y. Kase, F. Yatagai, T. Kato, and S. Matsubara, “Let dependence of cell death, mutation induction and chromatin damage in human cells irradiated with accelerated carbon ions,” Adv. Space Res. 18, 127–136 (1996).

    Article  ADS  Google Scholar 

  17. W. P. Chang and J. B. Little, “Persistently elevated frequency of spontaneous mutations in progeny of CHO clones surviving X-irradiation: association with delayed reproductive death phenotype,” Mutat. Res. Mol. Mech. Mutagen 270, 191–199 (1992).

    Article  Google Scholar 

  18. W. F. Morgan, J. P. Day, M. I. Kaplan, E. M. McGhee, and C. L. Limoli, “Genomic instability induced by ionizing radiation,” Radiat. Res. 146, 247 (1996).

    Article  ADS  Google Scholar 

  19. K. Suzuki, “Multistep nature of X-ray-induced neoplastic transformation in mammalian cells: genetic alterations and instability,” J. Radiat. Res. 38, 55–63 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  20. Z. Somodi, N. A. Zyuzikov, G. Kashino, K.-R. Trott, and K. M. Prise, “Radiation-induced genomic instability in repair deficient mutants of chinese hamster cells,” Int. J. Radiat. Biol. 81, 929–936 (2005).

    Article  Google Scholar 

  21. J. B. Little, L. Gorgojo, and H. Vetrovs, “Delayed appearance of lethal and specific gene mutations in irradiated mammalian cells,” Int. J. Radiat. Oncol. 19, 1425–1429 (1990).

    Article  Google Scholar 

  22. C. L. Limoli, M. I. Kaplan, J. Corcoran, M. Meyers, D. A. Boothman, and W. F. Morgan, “Chromosomal instability and its relationship to other end points of genomic instability,” Cancer Res. 57, 5557–63 (1997).

    Google Scholar 

  23. B. S. Sørensen, J. Overgaard, and N. Bassler, “In vitro RBE-LET dependence for multiple particle types,” Acta Oncol. (Madr.) 50, 757–762 (2011).

    Article  Google Scholar 

  24. G. W. Barendsen, “The relationships between RBE and LET for different types of lethal damage in mammalian cells: biophysical and molecular mechanisms,” Radiat. Res. 139, 257 (1994).

    Article  ADS  Google Scholar 

  25. D. T. Goodhead, “Mechanisms for the biological effectiveness of high-LET radiations,” J. Radiat. Res. Suppl. 40, 1–13 (1999).

    Article  Google Scholar 

  26. J. Kiefer, P. Schmidt, and S. Koch, “Mutations in mammalian cells induced by heavy charged particles: an indicator for risk assessment in space,” Radiat. Res. 156, 607–611 (2001).

    Article  ADS  Google Scholar 

  27. J. Thacker, A. Stretch, and M. A. Stephens, “Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions. II. Chinese hamster V79 cells,” Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 36, 137–48 (1979).

    Article  Google Scholar 

  28. R. D. Govorun, I. V. Koshlan, N. A. Koshlan, E. A. Krasavin, and N. L. Shmakova, “Chromosome instability of HPRT-mutant subclones induced by ionising radiation of various let,” Adv. Space Res. 30, 885–890 (2002).

    Article  ADS  Google Scholar 

  29. R. Cox and W. K. Masson, “Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions. III. Human diploid fibroblasts,” Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 36, 149–60 (1979).

    Article  Google Scholar 

  30. J. Thacker, A. Stretch, and M. A. Stephens, “The induction of thioguanine-resistant mutants of chinese hamster cells by gamma-rays,” Mutat. Res. 42, 313–26 (1977).

    Article  Google Scholar 

  31. R. Cox, J. Thacker, and D. T. Goodhead, “Inactivation and mutation of cultured mammalian cells by aluminium characteristic ultrasoft X-rays. II. dose-responses of chinese hamster and human diploid cells to aluminium X-rays and radiations of different LET,” Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 31, 561–76 (1977).

    Article  Google Scholar 

  32. J. Kiefer, A. Schreiber, F. Gutermuth, S. Koch, and P. Schmidt, “Mutation induction by different types of radiation at the HPRT locus,” Mutat. Res. Mol. Mech. Mutagen 431, 429–448 (1999).

    Article  Google Scholar 

  33. A. A. Bezbakh, V. B. Zager, G. Kaminski, A. I. Krylov, V. A. Krylov, Y. G. Teterev, and G. N. Timoshenko, “Upgrading the genome facility for radiobiological experiments with heavy-ion beams,” Phys. Part. Nucl. Lett. 10, 175–178 (2013).

    Article  Google Scholar 

  34. O. B. Tarasov and D. Bazin, “LISE++: radioactive beam production with in-flight separators,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 4657–4664 (2008).

    Google Scholar 

  35. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - the stopping and range of ions in matter,” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).

    Google Scholar 

  36. J. Thacker, M. A. Stephens, and A. Stretch, “Factors affecting the efficiency of purine analogues as selective agents for mutants of mammalian cells induced by ionising radiation,” Mutat. Res. 35, 465–78 (1976).

    Article  Google Scholar 

  37. A. Podlutsky, T. Bastlova, and B. Lambert, “Reduced proliferation rate of hypoxanthine-phosphoribosyl transferase mutant human T-lymphocytes in vitro,” Environ. Mol. Mutagen. 28, 13–18 (1996).

    Article  Google Scholar 

  38. A. M. Vaiserman, “Radiation hormesis: historical perspective and implications for low-dose cancer risk assessment,” Dose-Response 8 (2010). https://doi.org/10.2203/dose-response.09-037.Vaiserman

  39. A. C. Upton, “Radiation hormesis: data and interpretations,” Crit. Rev. Toxicol. 31, 681–695 (2001).

    Article  Google Scholar 

  40. S. Zhikrevetskaya, D. Peregudova, A. Danilov, E. Plyusnina, G. Krasnov, A. Dmitriev, A. Kudryavtseva, M. Shaposhnikov, and A. Moskalev, “Effect of low doses (5–40 cGy) of gamma-irradiation on lifespan and stress-related genes expression profile in drosophila melanogaster,” PLoS One 10, e0133840 (2015).

    Article  Google Scholar 

  41. H. Nikjoo, P. O’Neill, M. Terrissol, and D. T. Goodhead, “Quantitative modelling of DNA damage using Monte Carlo track structure method,” Radiat. Environ. Biophys. 38, 31–38 (1999).

    Article  Google Scholar 

  42. D. T. Goodhead, “Initial events in the cellular effects of ionizing radiations: clustered damage in DNA,” Int. J. Radiat. Biol. 65, 7–17 (1994).

    Article  Google Scholar 

  43. A. Asaithamby and D. J. Chen, “Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation,” Mutat. Res," Fundam. Mol. Mech. Mutagen 711, 87–99 (2011).

    Article  Google Scholar 

  44. B. M. Sutherland, P. V. Bennett, H. Schenk, O. Sidorkina, J. Laval, J. Trunk, D. Monteleone, and J. Sutherland, “Clustered DNA damages induced by high and low LET radiation, including heavy ions,” Phys. Med. 17 (Suppl. 1), 202–4 (2001).

    Google Scholar 

  45. C. Baumstark-Khan, I. M. Rosendahl, and H. Rink, “On the quality of mutations in mammalian cells induced by high LET radiations,” Adv. Space Res. 40, 474–482 (2007).

    Article  ADS  Google Scholar 

  46. L. Sabatier, B. Dutrillaux, and M. B. Martin, “Chromosomal instability,” Nature (London, U.K.) 357, 548–548 (1992).

    Article  ADS  Google Scholar 

  47. M. B. Martins, L. Sabatier, M. Ricoul, A. Pinton, and B. Dutrillaux, “Specific chromosome instability induced by heavy ions: a step towards transformation of human fibroblasts?,” Mutat. Res. Mol. Mech. Mutagen 285, 229–237 (1993).

    Article  Google Scholar 

  48. L. Sabatier, “Is delayed genomic instability specifically induced by high-LET particles?,” Nucl. Instrum. Methods Phys. Res., Sect. B 146, 518–527 (1998).

    Google Scholar 

  49. ICRU, “Linear energy transfer,” Int. Comm. Radiat. Units Meas. Rep. 16 (1970). https://doi.org/10.1093/jicru/os9.1.Report16

Download references

ACKNOWLEDGMENTS

We thank researchers from the Flerov Laboratory of Nuclear Reactions (Joint Institute of Nuclear Research) for the irradiation of samples with accelerated heavy ions at the U400M cyclotron and the Dzhelepov Laboratory of Nuclear Problems (JINR) for gamma irradiation at the Rokus-M facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Koshlan.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshlan, I.V., Koshlan, N.A., Blaga, P. et al. Radiation-Induced Mutagenesis in Mammalian Cells after Exposure to Accelerated Ions with Different LET. Phys. Part. Nuclei Lett. 17, 85–91 (2020). https://doi.org/10.1134/S1547477120010112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120010112

Navigation