Skip to main content
Log in

On Coherent Neutrino and Antineutrino Scattering off Nuclei

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Neutrino-nucleus \(\nu A \to \nu A\) and antineutrino-nucleus \(\bar {\nu }A \to \bar {\nu }A\) interactions, when the nucleus conserves its integrity, are discussed with coherent (elastic) and incoherent (inelastic) scattering regimes taken into account. In the first regime the nucleus remains in the same quantum state after the scattering and the cross-section depends on the quadratic number of nucleons. In the second regime the nucleus changes its quantum state and the cross-section has an essentially linear dependence on the number of nucleons. The coherent and incoherent cross-sections are driven by a nuclear nucleon form-factor squared \({{\left| F \right|}^{2}}\) term and a \((1 - {{\left| F \right|}^{2}})\) term, respectively. One has a smooth transition between the regimes of coherent and incoherent (anti)neutrino-nucleus scattering. Due to the neutral current nature these elastic and inelastic processes are indistinguishable if the nucleus recoil energy is only observed. One way to separate the coherent signal from the incoherent one is to register \(\gamma \) quanta from deexcitation of the nucleus excited during the incoherent scattering. Another way is to use a very low-energy threshold detector and collect data at very low recoil energies, where the incoherent scattering is vanishingly small. In particular, for \(^{{133}}{\text{Cs}}\) and neutrino energies of 30–50 MeV the incoherent cross-section is about 15–20% of the coherent one. Therefore, the COHERENT experiment (with \(^{{133}}{\text{Cs}}\)) has measured the coherent elastic neutrino nucleus scattering (CE\(\nu \)NS) with the inelastic admixture at a level of 15–20%, if the excitation \(\gamma \) quantum escapes its detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Z. Freedman, Phys. Rev. D 9, 1389 (1974).

    Article  ADS  Google Scholar 

  2. A. Drukier and L. Stodolsky, Phys. Rev. D 30, 2295 (1984).

    Article  ADS  Google Scholar 

  3. J. Barranco, O. G. Miranda, and T. I. Rashba, J. High Energy Phys. 12, 021 (2005); arXiv:hep-ph/0508299 [hep-ph].

    Article  Google Scholar 

  4. K. Patton, J. Engel, G. C. McLaughlin, and N. Schunck, Phys. Rev. C 86, 024 612 (2012); arXiv:1207.0693 [nucl-th].

    Article  Google Scholar 

  5. D. K. Papoulias and T. S. Kosmas, Adv. High Energy Phys. 2015, 763 648 (2015); arXiv:1502.02928 [nucl-th].

  6. P. F. Smith, Nuovo Cim. A 83, 263 (1984).

    Article  ADS  Google Scholar 

  7. N. Jachowicz, K. Heyde, and S. Rombouts, “Nuclei in the cosmos,” in Proceedings of the 6th International Conference on Cosmos 2000, Aarhus, Denmark, June 27–July 1, 2000, Nucl. Phys. A 688, 593 (2001).

    Article  ADS  Google Scholar 

  8. P. C. Divari, V. C. Chasioti, and T. S. Kosmas, Phys. Scr. 82, 065 201 (2010).

    Article  Google Scholar 

  9. G. McLaughlin, in Proceedings of the 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014), Boston, MA, June 2–7, 2014, AIP Conf. Proc. 1666, 160 001 (2015).

  10. J. D. Vergados, F. T. Avignone III, and I. Giomataris, Phys. Rev. D 79, 113 001 (2009); arXiv:0902.1055 [hep-ph].

    Article  Google Scholar 

  11. J. Papavassiliou, J. Bernabeu, and M. Passera, in Proceedings of the 2005 Europhysics Conference on High Energy Physics (EPS-HEP 2005), Lisbon, Portugal, July 21–27, 2005, PoS HEP 2005, 192 (2006); arXiv:hep-ph/0512029 [hep-ph].

  12. P. C. Divari, Adv. High Energy Phys. 2012, 379 460 (2012).

    Article  Google Scholar 

  13. J. R. Wilson, Phys. Rev. Lett. 32, 849 (1974).

    Article  ADS  Google Scholar 

  14. D. Z. Freedman, D. N. Schramm, and D. L. Tubbs, Ann. Rev. Nucl. Part. Sci. 27, 167 (1977).

    Article  ADS  Google Scholar 

  15. J. Bernabeu, “Low-energy elastic neutrino-nucleon and nuclear scattering and its relevance for supernovae,” CERN-TH-2073 (CERN, Switzerland, 1975).

    Google Scholar 

  16. S. Rombouts and K. Heyde, in Proceedings of the 4th International Symposium on Nuclei in the Cosmos, Notre Dame, USA, June 20–27, 1996, Nucl. Phys. A 621, 371C (1997).

    Article  ADS  Google Scholar 

  17. P. C. Divari, S. Galanopoulos, and G. A. Souliotis, J. Phys. G 39, 095204 (2012).

    Article  ADS  Google Scholar 

  18. K. Scholberg, Phys. Rev. D 73, 033005 (2006); arXiv:hep-ex/0511042 [hep-ex].

    Article  ADS  Google Scholar 

  19. P. deNiverville, M. Pospelov, and A. Ritz, Phys. Rev. D 92, 095005 (2015); arXiv:1505.07805 [hep-ph].

  20. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, and J. Salvado, arXiv:1805.04530 [hep-ph] (2018).

  21. M. Abdullah, J. B. Dent, B. Dutta, G. L. Kane, S. Liao, and L. E. Strigari, arXiv:1803.01224 [hep-ph] (2018).

  22. Y. Farzan, M. Lindner, W. Rodejohann, and X.-J. Xu, J. High Energy Phys. 05, 066 (2018); arXiv:1802.05171 [hep-ph].

  23. J. Billard, J. Johnston, and B. J. Kavanagh, arXiv: 1805.01798 [hep-ph] (2018).

  24. P. B. Denton, Y. Farzan, and I. M. Shoemaker, arXiv: 1804.03660 [hep-ph] (2018).

  25. S.-F. Ge and I. M. Shoemaker, arXiv:1710.10889 [hep-ph] (2017).

  26. D. K. Papoulias and T. S. Kosmas, Phys. Rev. D 97, 033003 (2018); arXiv:1711.09773 [hep-ph].

  27. B. C. Caas, E. A. Garcs, O. G. Miranda, and A. Parada, arXiv:1806.01310 [hep-ph] (2018).

  28. D. Aristizabal Sierra, V. de Romeri, and N. Rojas, arXiv: 1806.07424 [hep-ph] (2018).

  29. J. Engel, Phys. Lett. B 264, 114 (1991).

    Article  ADS  Google Scholar 

  30. P. S. Amanik and G. C. McLaughlin, J. Phys. G 36, 015105 (2009).

    Article  ADS  Google Scholar 

  31. P. S. Amanik and G. C. McLaughlin, arXiv:0707.4191 [hep-ph] (2007).

  32. K. M. Patton, G. C. McLaughlin, and K. Scholberg, Int. J. Mod. Phys. E 22, 1 330 013 (2013).

    Article  Google Scholar 

  33. M. Cadeddu, C. Giunti, Y. F. Li, and Y. Y. Zhang, Phys. Rev. Lett. 120, 072 501 (2018); arXiv:1710.02730 [hep-ph].

  34. J. A. Formaggio, E. Figueroa-Feliciano, and A. J. Anderson, Phys. Rev. D 85, 013009 (2012); arXiv: 1107.3512 [hep-ph].

    Article  ADS  Google Scholar 

  35. A. J. Anderson, J. M. Conrad, E. Figueroa-Feliciano, C. Ignarra, G. Karagiorgi, K. Scholberg, M. H. Shaevitz, and J. Spitz, Phys. Rev. D 86, 013 004 (2012); arXiv:1201.3805 [hep-ph].

    Article  Google Scholar 

  36. Yu. V. Gaponov and V. N. Tikhonov, Sov. J. Nucl. Phys. 26, 314 (1977).

    Google Scholar 

  37. L. M. Sehgal and M. Wanninger, Phys. Lett. B 171, 107 (1986).

    Article  ADS  Google Scholar 

  38. R. R. Lewis, Phys. Rev. D 21, 663 (1980).

    Article  ADS  Google Scholar 

  39. C. J. Horowitz, K. J. Coakley, and D. N. McKinsey, Phys. Rev. D 68, 023 005 (2003); arXiv:astro-ph/0302071 [astro-ph].

    Article  Google Scholar 

  40. Y. Giomataris and J. D. Vergados, Phys. Lett. B 634, 23 (2006); arXiv:hep-ex/0503029 [hep-ex].

    Article  ADS  Google Scholar 

  41. H. T. Wong, H.-B. Li, J. Li, Q. Yue, and Z.-Y. Zhou, in Proceedings of the 33rd International Conference on High Energy Physics (ICHEP'06), Moscow, Russia, July 26–Aug. 2, 2006, J. Phys.: Conf. Ser. 39, 266 (2006); arXiv:hep-ex/0511001 [hep-ex].

    ADS  Google Scholar 

  42. S. Sangiorgio, A. Bernstein, J. Coleman, M. Foxe, C. Hagmann, T. H. Joshi, I. Jovanovic, K. Kazkaz, K. Movrokoridis, and S. Pereverzev, in Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics 2011, Chicago, IL, June 9–14, 2011, Phys. Proc. 37, 1266 (2012).

  43. S. J. Brice et al., Phys. Rev. D 89, 072 004 (2014); arXiv:1311.5958 [physics.ins-det].

    Article  Google Scholar 

  44. A. V. Kopylov, I. V. Orekhov, V. V. Petukhov, and A. E. Solomatin, arXiv:1311.6564 [physics.ins-det] (2013).

  45. A. V. Kopylov, I. V. Orekhov, V. V. Petukhov, and A. E. Solomatin, Tech. Phys. Lett. 40, 185 (2014).

    Article  ADS  Google Scholar 

  46. G. Agnolet et al. (MINER), Nucl. Instrum. Methods Phys. Res., Sect. A 853, 53 (2017), arXiv:1609.02066 [physics.ins-det].

  47. A. Aguilar-Arevalo et al. (CONNIE Collab.), in Proceedings of the 15th Mexican Workshop on Particles and Fields (MWPF 2015), Mazatln, Mexico, Nov. 2–6, 2015, J. Phys.: Conf. Ser. 761, 012 057 (2016); arXiv: 1608.01565 [physics.ins-det].

  48. G. Fernandez Moroni, J. Estrada, E. E. Paolini, G. Cancelo, J. Tiffenberg, and J. Molina, Phys. Rev. D 91, 072001 (2015); arXiv:1405.5761 [physics.ins-det].

    Article  ADS  Google Scholar 

  49. V. Belov et al., J. Instrum. 10, P12011 (2015).

    Article  Google Scholar 

  50. R. Tayloe (for the COHERENT Collab.), arXiv: 1801.00086 [physics.ins-det] (2017).

  51. J. Billard et al., J. Phys. G 44, 105101 (2017); arXiv: 1612.09035 [physics.ins-det].

  52. H. T. Wong, in Proceedings of the 4th International Symposium on Symmetries in Subatomic Physics SSP 2009, Taipei, Taiwan, June 2–5, 2009, Nucl. Phys. A 844, 229C (2010).

    Article  ADS  Google Scholar 

  53. A. J. Anderson, J. M. Conrad, E. Figueroa-Feliciano, K. Scholberg, and J. Spitz, Phys. Rev. D 84, 013008 (2011); arXiv:1103.4894 [hep-ph].

    Article  ADS  Google Scholar 

  54. A. Gutlein et al., Astropart. Phys. 69, 44 (2015); arXiv:1408.2357 [hep-ph].

    Article  ADS  Google Scholar 

  55. V. A. Bednyakov, Phys. Part. Nucl. 47, 711 (2016); arXiv: 1505.04380 [hep-ph].

  56. S. Fallows, T. Kozynets, and C. B. Krauss, arXiv: 1806.01417 [astro-ph.HE] (2018).

  57. A. Bolozdynya et al., arXiv:1211.5199 [hep-ex] (2012).

  58. D. Akimov et al. (COHERENT Collab.), arXiv: 1509.08702 [physics.ins-det] (2015).

  59. J. I. Collar, N. E. Fields, M. Hai, T. W. Hossbach, J. L. Orrell, C. T. Overman, G. Perumpilly, and B. Scholz, Nucl. Instrum. Methods Phys. Res., Sect. A 773, 56 (2015); arXiv:1407.7524 [physics.ins-det].

  60. D. Akimov et al. (COHERENT Collab.), arXiv: 1708.01294 [nucl-ex]; Science (2017). https://doi.org/10.1126/science.aao0990

    Article  ADS  Google Scholar 

  61. D. Akimov et al. (COHERENT Collab.), arXiv: 1804.09459 [nucl-ex] (2018). https://doi.org/10.5281/zenodo.1228631

  62. D. Akimov et al. (COHERENT Collab.), arXiv: 1803.09183 [physics.ins-det] (2018b).

  63. I. Waller and D. R. Hartree, Proc. R. Soc. London, Ser. A 124, 119 (1929). http://rspa.royalsocietypublishing.org/content/124/793/119.full.pdf.

    Article  ADS  Google Scholar 

  64. P. M. Morse, Phys. Z. 33, 443 (1932).

    Google Scholar 

  65. L. van Hove, Phys. Rev. 95, 24 9 (1954).

    Article  MathSciNet  Google Scholar 

  66. V. A. Bednyakov and D. V. Naumov, Phys. Rev. D 98, 053004 (2018); arXiv:1806.08768 [hep-ph].

  67. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  68. R. H. Helm, Phys. Rev. 104, 1466 (1956).

    Article  ADS  Google Scholar 

  69. V. V. Belov et al., in JINR Program Advisory Committee (2018).

  70. D. Barker and D. M. Mei, Astropart. Phys. 38, 1 (2012); arXiv:1203.4620 [astro-ph.IM].

    Article  ADS  Google Scholar 

  71. P. Agnes et al. (DarkSide), arXiv:1802.06994 [astro-ph.HE] (2018).

  72. T. W. Donnelly and J. D. Walecka, Ann. Rev. Nucl. Part. Sci. 25, 329 (1975).

    Article  ADS  Google Scholar 

  73. M. Cadeddu and F. Dordei, Phys. Rev. D 99, 033010 (2019); arXiv:1808.10202 [hep-ph].

  74. C. Böhm, D. G. Cerdeño, P. A. N. Machado, A. O.‑D. Campo, and E. Reid, J. Cosmol. Astropart. Phys. 1901, 043 (2019); arXiv:1809.06385 [hep-ph].

  75. V. Brdar, W. Rodejohann, and X.-J. Xu, J. High Energy Phys. 12, 024 (2018); arXiv:1810.03626 [hep-ph].

  76. M. Cadeddu, C. Giunti, K. A. Kouzakov, Y. F. Li, A. I. Studenikin, and Y. Y. Zhang, Phys. Rev. D 98, 113010 (2018); arXiv:1810.05606 [hep-ph].

  77. A. Millar, G. Raffelt, L. Stodolsky, and E. Vitagliano, Phys. Rev. D 98, 123006 (2018); arXiv:1810.06584 [hep-ph].

  78. W. Altmannshofer, M. Tammaro, and J. Zupan, arXiv: 1812.02778 [hep-ph] (2018).

  79. C. Blanco, D. Hooper, and P. Machado, arXiv: 1901.08094 [hep-ph] (2019).

  80. D. Aristizabal Sierra, J. Liao, and D. Marfatia, arXiv: 1902.07398 [hep-ph] (2019).

  81. X.-R. Huang and L.-W. Chen, arXiv:1902.07625 [hep-ph] (2019).

  82. O. G. Miranda, G. Sanchez Garcia, and O. Sanders, arXiv:1902.09036 [hep-ph] (2019).

  83. D. K. Papoulias, T. S. Kosmas, R. Sahu, V. K. B. Kota, and M. Hota, arXiv:1903.03722 [hep-ph] (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bednyakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednyakov, V.A., Naumov, D.V. On Coherent Neutrino and Antineutrino Scattering off Nuclei. Phys. Part. Nuclei Lett. 16, 638–646 (2019). https://doi.org/10.1134/S1547477119060396

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477119060396

Keywords:

Navigation