Skip to main content
Log in

General Boundary Conditions for a Majorana Single-Particle in a Box in (1 + 1) Dimensions

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We consider the problem of a Majorana single-particle in a box in (1 + 1) dimensions. We show that the most general set of boundary conditions for the equation that models this particle is composed of two families of boundary conditions, each one with a real parameter. Within this set, we only have four confining boundary conditions—but infinite not confining boundary conditions. Our results are also valid when we include a Lorentz scalar potential in this equation. No other Lorentz potential can be added. We also show that the four confining boundary conditions for the Majorana particle are precisely the four boundary conditions that mathematically can arise from the general linear boundary condition used in the MIT bag model. Certainly, the four boundary conditions for the Majorana particle are also subject to the Majorana condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Roy and V. Singh, Phys. Lett. B 143, 179 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Falkensteiner and H. Grosse, J. Phys. Math. 28, 850 (1987).

    Article  Google Scholar 

  3. S. M. Roy and V. Singh, J. Phys. A: Math. Gen. 22, L425 (1989).

    Article  ADS  Google Scholar 

  4. V. Alonso, S. De Vincenzo, and L. Mondino, Eur. J. Phys. 18, 315 (1997).

    Article  Google Scholar 

  5. V. Alonso and S. De Vincenzo, J. Phys. A: Math. Gen. 30, 8573 (1997).

    Article  ADS  Google Scholar 

  6. S. De Vincenzo, Rev. Mex. Fis. 60, 401 (2014).

    Google Scholar 

  7. E. Majorana, Nuovo Cimento 14, 171 (1937).

    Article  Google Scholar 

  8. S. Esposito, Ann. Phys. (N.Y.) 327, 1617 (2012).

    Article  ADS  Google Scholar 

  9. F. Wilczek, Nat. Phys. 5, 614 (2009).

    Article  Google Scholar 

  10. R. Jackiw, Phys. Scr. T 146, 014005 (2012).

    Article  ADS  Google Scholar 

  11. M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27, 124003 (2012).

    Article  ADS  Google Scholar 

  12. M. H. Al-Hashimi, A. M. Shalaby, and U.-J. Wiese, Phys. Rev. D: Part. Fields 95, 065007 (2017).

    Article  ADS  Google Scholar 

  13. P. N. Bogolioubov, Ann. Inst. Henri Poincaré 8, 163 (1968).

    Google Scholar 

  14. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D: Part. Fields 9, 3471 (1974).

    Article  ADS  Google Scholar 

  15. A. W. Thomas, Adv. Nucl. Phys. 13, 1 (1984).

    Google Scholar 

  16. L. Vepstas and A. D. Jackson, Phys. Rep. 187, 109 (1990).

    Article  ADS  Google Scholar 

  17. A. Zee, Quantum Field Theory in a Nutshell, 2nd ed. (Princeton Univ. Press, Princeton, 2010).

    MATH  Google Scholar 

  18. J. J. Sakuray, Advanced Quantum Mechanics (Addison-Wesley, Reading, MA, 1967).

    Google Scholar 

  19. K. S. Ranade, Fortschr. Phys. 63, 644 (2015).

    Article  MathSciNet  Google Scholar 

  20. P. Alberto, C. Fiolhais, and V. M. S. Gil, Eur. J. Phys. 17, 19 (1996).

    Article  Google Scholar 

  21. N. Arrizabalaga, L. Le Treust, and N. Raymond, Commun. Math. Phys. 354, 641 (2017).

    Article  ADS  Google Scholar 

  22. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1966), Vol.2.

  23. L. P. de Oliveira and L. B. Castro, Ann. Phys. (N.Y.) 364, 99 (2016).

    Article  ADS  Google Scholar 

  24. A. Y. Kitaev, Phys. Usp. 44, 131 (2001).

    Article  ADS  Google Scholar 

  25. C. W. J. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113 (2013).

    Article  ADS  Google Scholar 

  26. A. Stern, Nature (London, U.K.) 464, 187 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore De Vincenzo.

Additional information

The article is published in the original.

S. De Vincenzo would like to dedicate this paper to the memory of Alvaro Roccaro Giamporcaro, friend and physicist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Vincenzo, S., Sánchez, C. General Boundary Conditions for a Majorana Single-Particle in a Box in (1 + 1) Dimensions. Phys. Part. Nuclei Lett. 15, 257–268 (2018). https://doi.org/10.1134/S154747711803007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711803007X

Keywords

Navigation