Skip to main content
Log in

Characterizing Klein–Fock–Gordon–Majorana Particles in (1 + 1) Dimensions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Theoretically, in (1 + 1) dimensions, one can have Klein–Fock–Gordon–Majorana (KFGM) particles. More precisely, these are one-dimensional (1D) Klein–Fock–Gordon (KFG) and Majorana particles at the same time. In principle, the wave equations considered to describe such first-quantized particles are the standard 1D KFG equation and/or the 1D Feshbach–Villars (FV) equation, each with a real Lorentz scalar potential and some kind of Majorana condition. The aim of this paper is to analyze the latter assumption fully and systematically; additionally, we introduce specific equations and boundary conditions to characterize these particles when they lie within an interval (or on a line with a tiny hole at a point). In fact, we write first-order equations in the time derivative that do not have a Hamiltonian form. We may refer to these equations as first-order 1D Majorana equations for 1D KFGM particles. Moreover, each of them leads to a second-order equation in time that becomes the standard 1D KFG equation when the scalar potential is independent of time. Additionally, we examine the nonrelativistic limit of one of the first-order 1D Majorana equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Baym, Lectures on Quantum Mechanics (Westview Press, New York, 1990)

    Google Scholar 

  2. W. Greiner, Relativistic Quantum Mechanics, 3rd edn. (Springer, Berlin, 2000)

    Google Scholar 

  3. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics, 2nd edn. (Pergamon Press, Oxford, 1982)

    Google Scholar 

  4. E. Majorana, Teoria simmetrica dell’electrone e del positrone. Il Nuovo Cimento 14, 171–84 (1937)

    Article  ADS  CAS  Google Scholar 

  5. S. Esposito, Searching for an equation: Dirac, Majorana and the others. Ann. Phys. 327, 1617–44 (2012)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. A. Zee, Quantum Field Theory in a Nutshell, 2nd edn. (Princeton University Press, Princeton, 2010)

    Google Scholar 

  7. F. Wilczek, Majorana return. Nat. Phys. 5, 614–8 (2009)

    Article  CAS  Google Scholar 

  8. F. Tamburini, B. Thidé, I. Licata, F. Bouchard, E. Karimi, Majorana bosonic quasiparticles from twisted photons in free space. Phys. Rev. A 103, 033505 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. R. Jackiw, Fractional and Majorana fermions: the physics of zero-energy modes. Phys. Scr. T. 2012, 014005 (2012)

    Article  ADS  Google Scholar 

  10. M. Leijnse, K. Flensberg, Introduction to topological superconductivity and Majorana fermions. Semicond. Sci. Technol. 27, 124003 (2012)

    Article  ADS  Google Scholar 

  11. R. Aguado, Majorana quasiparticles in condensed matter. Rivista del Nuovo Cimento 40, 523–93 (2017)

    ADS  CAS  Google Scholar 

  12. A. Stern, Non-Abelian states of matter. Nature 464, 187–93 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. F. Wilczek, Majorana and condensed matter, Preprint, arXiv:1404.0637v1 [cond-mat-supr-con] (2014)

  14. S. Esposito, The Physics of Ettore Majorana–Phenomenological, Theoretical, and Mathematical (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  15. O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik 37, 895–906 (1926)

    Article  ADS  Google Scholar 

  16. V. Fock, Zur Schrödingerschen Wellenmechanik. Zeitschrift für Physik 38, 242–50 (1926)

    Article  ADS  Google Scholar 

  17. W. Gordon, Der Comptoneffekt nach der Schrödingerschen Theorie. Zeitschrift für Physik 40, 117–33 (1926)

    Article  ADS  CAS  Google Scholar 

  18. H. Feshbach, F. Villars, Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles. Rev. Mod. Phys. 30, 24–45 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Fujita, Symmetry and its Breaking in Quantum Field Theory (Nova Science Publishers, New York, 2011)

    Google Scholar 

  20. J.J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, 1967)

    Google Scholar 

  21. S. Oshima, S. Kanemaki, T. Fujita, Problems of real scalar Klein-Gordon field, Preprint, arXiv:0512156v1 [hep-th] (2005)

  22. T. Fujita, S. Kanemaki, A. Kusaka, S. Oshima, Mistery of real scalar Klein–Gordon field, Preprint, arXiv:0610268v1 [physics] (2006)

  23. E. Comay, Problems with mathematically real quantum wave functions. Open Access Library J. 3, e2921 (2016)

    Google Scholar 

  24. S. De Vincenzo, General pseudo self-adjoint boundary conditions for a 1D KFG particle in a box. Phys. Open 15, 100151 (2023)

    Article  Google Scholar 

  25. M. Merad, L. Chetouani, A. Bounames, Boundary conditions for the one-dimensional Feshbach–Villars equation. Phys. Lett. A 267, 225–31 (2000)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. P. Alberto, S. Das, E.C. Vagenas, Relativistic particle in a box: Klein–Gordon versus Dirac equations. Eur. J. Phys. 39, 025401 (2018)

    Article  Google Scholar 

  27. B.M. Motamendi, T.N. Shannon, Z. Papp, Relativistic spin-0 Feshbach–Villars equations for polynomial potentials. Few-Body Syst. 60, 65 (2019)

    Article  ADS  Google Scholar 

  28. A. Wachter, Relativistic Quantum Mechanics (Springer, Berlin, 2011)

    Book  Google Scholar 

  29. S. De Vincenzo, Differential equations for the Majorana particle in 3+1 and 1+1 dimensions. Theor. Math. Phys. 209, 1726–46 (2021)

    Article  MathSciNet  Google Scholar 

  30. S. De Vincenzo, C. Sánchez, General boundary conditions for a Majorana single-particle in a box in (1+1) dimensions. Phys. Part. Nucl. Lett. 15, 257–68 (2018)

    Article  Google Scholar 

  31. J.T. Firouzjaee, A. Rostami, M. Bahmanabadi, Revisiting nonrelativistic limits of field theories: antiparticles. Preprint, arXiv:1804.08600v1 [hep-th] (2018)

  32. M.H. Namjoo, A.H. Guth, D.I. Kaiser, Relativistic corrections to nonrelativistic effective field theories. Phys. Rev. D 98, 016011 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  33. R. Banerjee, P. Mukherjee, Subtleties of nonrelativistic reduction and applications. Nucl. Phys. B 938, 1–21 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. B. Salehian, M.H. Namjoo, D.I. Kaiser, Effective theories for a nonrelativistic field in an expanding universe: induced self-interaction, pressure, sound speed, and viscosity. J. High Energ. Phys. 2020, 59 (2020)

    Article  MathSciNet  Google Scholar 

  35. L.H. Heyen, S. Floerchinger, Real scalar field, the nonrelativistic limit, and the cosmological expansion. Phys. Rev. D 102, 036024 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

S. De V. conceived the idea for the article, researched the topic, wrote-up the manuscript, and finally revised it.

Corresponding author

Correspondence to Salvatore De Vincenzo.

Ethics declarations

Conflicts of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

As we have seen, we can write \(2+2=4\) first-order (non-Hamiltonian) 1D Majorana equations in time for the 1D KFGM particles, namely, Eqs. (44) and (48) (by using the standard Majorana condition), and (51) and (55) (by using the nonstandard Majorana condition). Likewise, we can also write four second-order 1D Majorana equations in time for these particles, i.e., four second-order equations for the components \(\varphi \) and \(\chi \) of \(\Psi \). In effect, applying the operator \(\hat{\textrm{E}}\) to both sides of Eq. (44), and using the relation \(\hat{\textrm{E}}^{*}=-\hat{\textrm{E}}\), gives the following equation:

$$\begin{aligned} \left[ \,\hat{\textrm{E}}^{2}-(c\,\hat{\textrm{p}})^{2} -(\textrm{m}c^{2})^{2}-2\,\textrm{m}c^{2}S\,\right] \varphi =(\hat{\textrm{E}}\, S)(\varphi +\varphi ^{*}). \end{aligned}$$
(A1)

Similarly, from Eq. (48), the following equation is obtained:

$$\begin{aligned} \left[ \,\hat{\textrm{E}}^{2}-(c\,\hat{\textrm{p}})^{2}-(\textrm{m}c^{2})^{2}-2\, \textrm{m}c^{2}S\,\right] \chi =-(\hat{\textrm{E}}\, S)(\chi +\chi ^{*}). \end{aligned}$$
(A2)

These two equations correspond to the Majorana condition \(\Psi =\Psi _{c}\), that is, \(\psi =\psi ^{*}\). If we add Eqs. (A1) and (A2) and use the relations given in Eqs. (3) and (4) (the latter with \(V=0\)), it is confirmed that \(\psi =\varphi +\chi \) satisfies the 1D KFG equation (i.e., Eq. 39), namely,

$$\begin{aligned} \left[ \,\hat{\textrm{E}}^{2}-(c\,\hat{\textrm{p}})^{2} -(\textrm{m}c^{2})^{2}-2\,\textrm{m}c^{2}S\,\right] \psi =0, \end{aligned}$$
(A3)

as expected. Note that only when the scalar potential does not explicitly depend on time, the complex components \(\varphi \) and \(\chi \) of \(\Psi \) also satisfy this equation. If this is not the case, only the functions \(\textrm{Re}(\varphi )\) and \(\textrm{Re}(\chi )\) can satisfy the 1D KFG equation (see the discussion following Eq. (45) through Eq. (50)).

Similarly, applying the operator \(\hat{\textrm{E}}\) to both sides of Eq. (51), and using the relation \(\hat{\textrm{E}}^{*}=-\hat{\textrm{E}}\), gives the equation

$$\begin{aligned} \left[ \,\hat{\textrm{E}}^{2}-(c\,\hat{\textrm{p}})^{2} -(\textrm{m}c^{2})^{2}-2\,\textrm{m}c^{2}S\,\right] \varphi =(\hat{\textrm{E}}\, S)(\varphi -\varphi ^{*}). \end{aligned}$$
(A4)

In the same manner, applying \(\hat{\textrm{E}}\) to Eq. (55) gives the following equation:

$$\begin{aligned} \left[ \,\hat{\textrm{E}}^{2}-(c\,\hat{\textrm{p}})^{2} -(\textrm{m}c^{2})^{2}-2\,\textrm{m}c^{2}S\,\right] \chi =-(\hat{\textrm{E}}\, S)(\chi -\chi ^{*}). \end{aligned}$$
(A5)

The latter two equations correspond to the Majorana condition \(\Psi =-\Psi _{c}\), that is, \(\psi =-\psi ^{*}\). If we add Eqs. (A4) and (A5) and use the relations given in Eqs. (3) and (4) (the latter with \(V=0\)), it is again found that \(\psi =\varphi +\chi \) satisfies the 1D KFG equation (i.e., Eq. A3), as expected. Clearly, if \((\hat{\textrm{E}}\, S)=0\), then \(\varphi \) and \(\chi \) also satisfy the 1D KFG equation. If \((\hat{\textrm{E}}\, S)\ne 0\), then only the functions \(\textrm{Im}(\varphi )\) and \(\textrm{Im}(\chi )\) can satisfy this equation (see the discussion following Eq. (53) through Eq. (57)).

Appendix B

Let us examine the nonrelativistic approximation of one of the first-order 1D Majorana equations in time, for example, Eq. (44). As we know, the latter equation for \(\varphi \in {\mathbb {C}}\) is completely equivalent to Eq. (46), namely,

$$\begin{aligned} \left[ \,-\hbar ^{2}\frac{\partial ^{2}}{\partial t^{2}}+\hbar ^{2}c^{2} \frac{\partial ^{2}}{\partial x^{2}}-(\textrm{m}c^{2})^{2}-2\,\textrm{m}c^{2}S\,\right] \textrm{Re}(\varphi )=0, \end{aligned}$$
(B1)

plus the relation given in Eq. (47), namely,

$$\begin{aligned} \textrm{Im}(\varphi )=\frac{\hbar }{\textrm{m}c^{2}}\,\frac{\partial }{\partial t}\,\textrm{Re}(\varphi ). \end{aligned}$$
(B2)

Let us note that Eq. (B1) can also be written as follows:

$$\begin{aligned} \textrm{Re}\left[ \,\left( \,-\hbar ^{2}\frac{\partial ^{2}}{\partial t^{2}}+\hbar ^{2}c^{2}\frac{\partial ^{2}}{\partial x^{2}}-(\textrm{m}c^{2})^{2}-2\,\textrm{m}c^{2}S\,\right) \varphi \,\right] =0. \end{aligned}$$
(B3)

Now, we choose the typical ansatz that connects \(\varphi \) to its nonrelativistic approximation \(\varphi _{\textrm{NR}}\), namely,

$$\begin{aligned} \varphi =\varphi _{\textrm{NR}}\,\textrm{e}^{-\textrm{i}\frac{\textrm{m}c^{2}}{\hbar }t}, \end{aligned}$$
(B4)

and therefore,

$$\begin{aligned} \varphi _{t}=\left[ (\varphi _{\textrm{NR}})_{t}-\textrm{i}\frac{\textrm{m}c^{2}}{\hbar }\, \varphi _{\textrm{NR}}\right] \textrm{e}^{-\textrm{i}\frac{\textrm{m}c^{2}}{\hbar }t} \end{aligned}$$
(B5)

and

$$\begin{aligned} \varphi _{tt}=\left[ (\varphi _{\textrm{NR}})_{tt}-\textrm{i} \frac{2\textrm{m}c^{2}}{\hbar }\,(\varphi _{\textrm{NR}})_{t}-\frac{(\textrm{m}c^{2})^{2}}{\hbar ^{2}}\, \varphi _{\textrm{NR}}\right] \textrm{e}^{-\textrm{i}\frac{\textrm{m}c^{2}}{\hbar }t}. \end{aligned}$$
(B6)

In the nonrelativistic approximation, we have that

$$\begin{aligned} \left| \,\textrm{i}\hbar \,(\varphi _{\textrm{NR}})_{t}\,\right| \ll \textrm{m}c^{2}\left| \, \varphi _{\textrm{NR}}\,\right| \;\Rightarrow \; \left| \,(\varphi _{\textrm{NR}})_{t}\,\right| \ll \frac{\textrm{m}c^{2}}{\hbar }\left| \, \varphi _{\textrm{NR}}\,\right| \end{aligned}$$
(B7)

and

$$\begin{aligned} \left| \,\textrm{i}\hbar \,(\varphi _{\textrm{NR}})_{tt}\,\right| \ll \textrm{m}c^{2}\left| \, (\varphi _{\textrm{NR}})_{t}\,\right| \;\Rightarrow \;\left| \,(\varphi _{\textrm{NR}})_{tt}\,\right| \ll \frac{\textrm{m}c^{2}}{\hbar } \left| \,(\varphi _{\textrm{NR}})_{t}\,\right| . \end{aligned}$$
(B8)

Consequently, in this regime, the relations given in Eqs. (B5) and (B6) can be written as follows:

$$\begin{aligned} \varphi _{t}=-\textrm{i}\frac{\textrm{m}c^{2}}{\hbar }\,\varphi _{\textrm{NR}}\, \textrm{e}^{-\textrm{i}\frac{\textrm{m}c^{2}}{\hbar }t} \end{aligned}$$
(B9)

and

$$\begin{aligned} \varphi _{tt}=\left[ -\textrm{i}\frac{2\textrm{m}c^{2}}{\hbar }\,(\varphi _{\textrm{NR}})_{t} -\frac{(\textrm{m}c^{2})^{2}}{\hbar ^{2}}\,\varphi _{\textrm{NR}}\right] \textrm{e}^{-\textrm{i} \frac{\textrm{m}c^{2}}{\hbar }t}. \end{aligned}$$
(B10)

Substituting the latter expression into Eq. (B3), we obtain the following result:

$$\begin{aligned} \textrm{Re}\left[ \,\textrm{e}^{-\textrm{i}\frac{\textrm{m}c^{2}}{\hbar }t} \left( \,-\hat{\textrm{E}}+\frac{\hat{\textrm{p}}^{2}}{2\textrm{m}}+S\,\right) \varphi _{\textrm{NR}}\,\right] =0. \end{aligned}$$
(B11)

Clearly, this is not the Schrödinger equation with the scalar interaction, i.e., \(\varphi _{\textrm{NR}}\) in Eq. (B11) does not necessarily obey this equation.

Similarly, the relation that gives the imaginary part of \(\varphi \) (Eq. B2) can also be written as follows:

$$\begin{aligned} \textrm{Im}(\varphi )=\textrm{Re}\left( \frac{\hbar }{\textrm{m}c^{2}}\,\varphi _{t}\right) . \end{aligned}$$
(B12)

Substituting Eqs. (B4) and (B9) into Eq. (B12), we obtain the result

$$\begin{aligned} \textrm{Im}\left( \varphi _{\textrm{NR}}\,\textrm{e}^{-\textrm{i}\frac{\textrm{m}c^{2}}{\hbar }t}\right) =\textrm{Re}\left( -\textrm{i}\,\varphi _{\textrm{NR}}\,\textrm{e}^{-\textrm{i}\frac{\textrm{m}c^{2}}{\hbar }t}\right) , \end{aligned}$$
(B13)

which is always true because \(\textrm{Im}(z)=\textrm{Re}(-\textrm{i}z)\), for all \(z\in {\mathbb {C}}\). Thus, nothing new is obtained from Eq. (B2) and the nonrelativistic limit of Eq. (44) reduces to Eq. (B11). Finally, \(\varphi _{\textrm{NR}}\) is obtained from Eq. (B11), \((\varphi \) is given in Eq. (B4) and \(\chi =\varphi ^{*})\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Vincenzo, S. Characterizing Klein–Fock–Gordon–Majorana Particles in (1 + 1) Dimensions. Few-Body Syst 65, 11 (2024). https://doi.org/10.1007/s00601-024-01882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01882-9

Navigation