Skip to main content
Log in

Sol-Gel Synthesis and Structure of Nanocomposites Based on Tetraethoxysilane and Boron Compounds

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The properties of sol-gel synthesis of borosilicate sols, wet gels and xerogels, as well as thin nanosized films were studied. Physicochemical processes and phenomena accompanying sol-gel synthesis of borosilicate sols, gels, xerogels, and thin spin-on glass films were analyzed on the basis of reference data and our long-term experience. Particularly, the sol-gel synthesis of borosilicate materials with high boron concentration were described in detail. The morphology, mesostructures and chemical composition of sol-gel derived borosilicate composites with a high boron content (from 30 to 48 wt %, based on B2O3) were studied using a number of complementary research methods (optical, scanning and transmission microscopy, small-angle X-ray scattering, and FTIR spectroscopy). The effect of sol composition (concentrations of Si(OEt)4 and H3BO3), ofthe addition of polyols (primarily glycerol), of the conditions for synthesis and of aging of target materials on their composition were studied, as well as the morphology and mesostructures of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Balestriere, M.A., Schuhladen, K., Herrera Seitz, K., Boccaccini, A.R., Cere, S.M., and Ballarre, J., Sol-gel coatings incorporating borosilicate bioactive glass enhance anti corrosive and surface performance of stainless steel implants, J. Electroanal. Chem., 2020, vol. 876, 114735.

    Article  CAS  Google Scholar 

  2. Tsvetkova, I.N., Shilova, O.A., Shilov, V.V., Shaulov, A.Yu., Gomza, Yu.P., and Khashkovskii, S.V., Sol-gel synthesis and investigation of hybrid organic-inorganic borosilicate nanocomposites, Glass Phys. Chem., 2006, vol. 32, no. 2, pp. 218–227.

    Article  CAS  Google Scholar 

  3. Nechvolodova, E.M., Sakovich, R.A., Grachev, A.V., Vladimirov, L.V., Shashkin, D.P., Tkachenko, L.A., Shaulov, A.Yu., and Berlin, A.A., Hybrid complex polymers of boron and imidazole hydroxide, Russ. J. Phys. Chem. B, 2017, vol. 11, no. 5, pp. 839–845.

    Article  CAS  Google Scholar 

  4. Stegno, V., Zuev, K.V., Grachev, A.V., Lalayan, V.M., Patlazhan, S.A., Shaulov, A.Yu., and Berlin, A.A., Features of the melt flow of polyethylene and boron oxide oligomer blends, Polymer Sci., Ser. A, 2014, vol. 56, no. 2, pp. 169–172.

    Article  CAS  Google Scholar 

  5. McFarland, B. and Opila, E.J., Sol-gel derived borosilicate glasses and thin film coatings on SiC substrate: Boron loss and carbon retention due to processing and heat treatment, J. Non-Cryst. Solids, 2016, vol. 449, pp. 59–69.

    Article  CAS  Google Scholar 

  6. Shilova, O.A., Synthesis and structure features of composite silicate and hybrid TEOS-derived thin films doped by inorganic and organic additives, J. Sol-Gel Sci. Technol., 2013, vol. 68, pp. 387–410.

    Article  CAS  Google Scholar 

  7. Shilova, O.A., Spin-on glass films for semiconductor technology, Surf. Coat. Technol., B, 2003, vol. 86, no. 3, pp. 195–202.

  8. Rammohan, P., Boric acid in organic synthesis: Scope and recent developments, Arkivoc, 2018, Part I, pp. 346–371.

  9. Oliver, J.-A.N., Su, Y., Lu, X., Kuo, P.-H., Du, J., and Zhu, D., Bioactive glass coatings on metallic implants for biomedical applications, Bioactive Mater., 2019, vol. 4, pp. 261–270.

    Article  Google Scholar 

  10. Peddi, L., Brow, R.K., and Brown, R.F., Bioactive borate glass coatings for titanium alloys, J. Mater. Sci.: Mater. Med., 2008, vol. 19, pp. 3145–3152.

    CAS  Google Scholar 

  11. Pang, L., Shen, Y., Hu, H., Zeng, X., Huang, W., Gao, H., Wang, H., and Wang, D., Chemically and physically cross-linked polyvinyl alcohol-borosilicate gel hybrid scaffolds for bone regeneration, Mater. Sci. Eng. C, 2019, vol. 105, 110076.

    Article  CAS  Google Scholar 

  12. Tsvetkova, I.N., Krasil’nikova, L.N., Khoroshavina, Y.V., Galushko, A.S., Frantsuzova, Yu.V., Kychkin, A.K., and Shilova, O.A., Sol-gel preparation of protective and decorative coatings on wood, Sol-Gel Sci. Technol., 2019, vol. 92, pp. 474–483.

    CAS  Google Scholar 

  13. Prosanov, I.Yu., Abdulrahman, S.T., Thomas, S., Bulina, N.V., and Gerasimov, K.B., Complex of polyvinyl alcohol with boric acid: Structure and use, Mater. Today Commun., 2018, vol. 14, pp. 77–81.

    Article  CAS  Google Scholar 

  14. Appen, A.A., Khimiya stekla (Glass Chemistry), Leningrad: Khimiya, 1974, 2nd ed.

  15. Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, San Diego: Academic, 1990.

    Google Scholar 

  16. Toropov, N.A., Barzakovskii, V.P., Lapin, V.V., and Kurtseva, N.N., Diagrammy sostoyaniya silikatnykh sistem, Spravochnik (Handbook on Phase Diagrams for Silicate Systems: Binary Bystems), 2nd ed., Leningrad: Nauka, 1985.

  17. Antropova, T.V., Kalinina, S.V., Kostyreva, T.G., Drozdova, I.A., and Anfimova, I.N., Peculiarities of the fabrication process and the structure of porous membranes based on two phase fluorine and phosphorus containing sodium borosilicate glasses, Glass. Phys. Chem., 2015, vol. 41, pp. 14–25.

    Article  CAS  Google Scholar 

  18. Konon, M., Stolyar, S., Polyakova, I., Drozdova, I., Semrnova, E., and Antropova, T., Phase separated and porous glasses in the Na2O–B2O–SiO2–Fe2O3 glass forming system, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2019, vol. 60, no. 3, pp. 115–124.

    Google Scholar 

  19. Shilova, O.A., Fractals, morphogenesis and triply periodic minimal surfaces in sol-gel-derived thin films, J. Sol-Gel Sci. Technol., 2020, vol. 95, pp. 599–608.

    Article  CAS  Google Scholar 

  20. Tsvetkova, I.N., Shilova, O.A., Voronkov, M.G., Gomza, Yu.P., and Sukhoy, K.M., Sol-gel synthesis and investigation of proton-conducting hybrid organic-inorganic silicophosphate materials, Glass. Phys. Chem., 2008, vol. 34, pp. 68–76.

    Article  CAS  Google Scholar 

  21. Sukhyy, K.M., Gomza, Yu.P., Belyanovskaya, E.A., Klepko, V.V., Shilova, O.A., and Sukhyy, M.P., Resistive humidity sensors based on proton-conducting organic-inorganic silicophosphates doped by polyionenes, J. Sol-Gel Sci. Technol., 2015, vol. 74, pp. 472–481.

    Article  CAS  Google Scholar 

  22. Baranchikov, A.E., Kopitsa, G.P., Yorov, K.E., Sipyagina, N.A., Lermontov, S.A., Pavlova, A.A., Kottsov, S.Yu., Garamus, V.M., Ryukhtin, V., and Ivanov, V.K., SiO2–TiO2 binary aerogels: A small-angle scattering study, Russ. J. Inorg. Chem., 2021, vol. 66, pp. 874–882.

    Article  CAS  Google Scholar 

  23. Tsvetkova, I.N., Shilova, O.A., Drozdova, I.A., and Gomza, Yu.P., Study of the fractal structure of hybrid phosphorosilicate and borosilicate materials obtained by sol-gel method, Perspekt. Mater., 2011, no. S13, pp. 888–895.

  24. Bokii, G.B., Kristallokhimiya (Crystal Chemistry), Leningrad: Nauka, 1971.

    Google Scholar 

  25. Shilova, O.A., Tsvetkova, I.N., Vlasov, D.Yu., Ryabusheva, Yu.V., Sokolov, G.S., Kychkin, A.K., Nguyên, C.V., and Khoroshavina, Yu.V., in Microbiologically Induced Deterioration and Environmentally Friendly Protection of Wood Products, Hafiz, M.N., Bilal, I.M., Nguyen, T.A., and Yasin, G., Eds., Amsterdam: Elsevier, 2022, Chap. 13, pp. 283–321.

    Book  Google Scholar 

  26. Lepry, W.C. and Nazhat, S.N., Highly bioactive sol-gel-derived borate glasses, Chem. Mater., 2015, vol. 27, no. 13, pp. 4821–4831.

    Article  CAS  Google Scholar 

  27. Qi, X., Wang, H., Zhang, Y., Pang, L., Xiao, W., and Jia, W., Mesoporous bioactive glass-coated 3D printed borosilicate bioactive glass scaffolds for improving repair of boned effects, Int. J. Biol. Sci., 2018, vol. 14, no. 4, pp. 471–484.

    Article  CAS  Google Scholar 

  28. Fu, Q., Rahaman, M.N., Bal, B.S., Bonewald, L.F., Kuroki, K., and Brown, R.F., Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation, J. Biomed. Mater. Res. A, 2010, vol. 95, no. 1, pp. 172–179.

    Article  Google Scholar 

  29. Huang, W.H., Rahaman, M.N., Day, D.E., and Li, Y.D., Mechanisms for converting bioactive silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2006, vol. 47, pp. 647–658.

    CAS  Google Scholar 

  30. Zinatloo-Ajabshir, S., Baladi, M., and Salavati-Niasari, M., Sono-synthesis of MnWO4 ceramic nanomaterials as highly efficient photocatalysts for the decomposition of toxic pollutants, Ceram. Int., 2021, vol. 47, no. 21, pp. 30178–30187.

    Article  CAS  Google Scholar 

  31. Zinatloo-Ajabshir, S., Heidari-Asil, S.A., Salavati-Niasari, M., and Salavati-Niasari, M., Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution, Ceram. Int., 2021, vol. 47, no. 7, pp. 8959–8972.

    Article  CAS  Google Scholar 

  32. Gribov, B.G., Zinoviev, K.V., Bogdanova, L.N., Kozyrkin, B.I., Zvezdochkin, A.R., Grigos, V.I., Pechurina, S.Ya., and Mironov, V.F., Method of producing a film-forming solution, USSR Author’s Certificate no. 493488, Byull. Izobret., 1975, no. 44.

  33. Shvarts, E.M., Ignash, R.T., and Belousova, R.G., Reactions of polyols with boric acid and sodium monoborate, Russ. J. Gen. Chem., 2005, vol. 75, pp. 1687–1692.

    Article  CAS  Google Scholar 

  34. Kuvshinov, V.A., Altunina, L.K., Stasieva, L.A., and Kuvshinov, I.V., Acidity study of donor-acceptor complexes of boric acid with polyols for oil displacing compositions, J. Sib. Fed. Univ. Chem., 2019, vol. 12, no. 3, pp. 364–373.

    Article  Google Scholar 

  35. Parashar, V.K., Orhan, J.-B., Sayah, A., Cantoni, M., and Gijs, M.A.M., Borosilicate nanoparticles prepared by exothermic phase separation, Nat. Nanotechnol., 2008, vol. 3, pp. 589–594.

    Article  CAS  Google Scholar 

  36. Cai, L., Lim, H., Fitzkee, N.C., Cosovic, B., and Jeremic, D., Feasibility of manufacturing strand-based wood composite treated with β-cyclodextrin-boric acid for fungal decay resistance, Polymers, 2020, vol. 12, no. 2, 274.

    Article  CAS  Google Scholar 

  37. Irwin, A.D., Holmgren, J.S., Zerda, T.W., and Jonas, J., Spectroscopic investigations of borosiloxane bond formation in the sol-gel process, J. Non-Cryst. Solids, 1987, vol. 89, pp. 191–205.

    Article  CAS  Google Scholar 

  38. Smirnova, I.V., Movchan, T.G., and Shilova, O.A., Specific features of structuring of film-forming silica sols in the presence of boric acid and four-arm polyol with hyperbranched structure, Russ. J. Appl. Chem., 2010, vol. 83, pp. 2128–2134.

    Article  CAS  Google Scholar 

  39. Bale, H.D. and Schmidt, P.W., Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties, Phys. Rev. Lett., 1984, vol. 52, p. 596.

    Article  Google Scholar 

  40. Schmidt, P.W., Avnir, D., Levy, D., Hohr, A., Steiner, M., and Roll, A., Small-angle X-ray scattering from the surfaces of reversed-phase silicas: Power-law scattering exponents of magnitudes greater than four, J. Chem. Phys., 1991, vol. 94, pp. 1474–1479.

    Article  CAS  Google Scholar 

  41. Teixeira, J., in Experimental Methods for Studying Fractal Aggregates, Stanley, H.E. and Ostrowsky, N., Eds., Dordrecht: Springer, 1986.

    Book  Google Scholar 

  42. Beaucage, G. and Schaefer, D.W., Structural studies of complex-systems using small-angle scattering - a unified Guinier power-law approach, J. Non-Cryst. Solids, 1994, vols. 172–174, no. 2, pp. 797–805.

    Article  Google Scholar 

  43. Beaucage, G., Approximations leading to a unified exponential/power-law approach to small-angle scattering, J. Appl. Crystallogr., 1995, vol. 28, pp. 717–728.

    Article  CAS  Google Scholar 

  44. Schmidt, P.W., Some Fundamental Concepts and Techniques Useful in Small-Angle Scattering Studies of Disordered Solids, Dordrecht: Kluwer, 1995.

    Book  Google Scholar 

  45. Guinier, A. and Fournet, G., Small-Angle Scattering of X-Rays, New York: Wiley, 1955.

    Google Scholar 

  46. Roe, R.J., Methods of X-Ray and Neutron Scattering in Polymer Science, New York: Oxford Univ. Press, 2000.

    Google Scholar 

  47. Ivanov, V.K., Kopitsa, G.P., Baranchikov, A.E., Grigor’ev, S.V., and Haramus, V., Evolution of composition and fractal structure of hydrous zirconia xerogels during thermal annealing, Russ. J. Inorg. Chem., 2010, vol. 55, pp. 155–161.

    Article  CAS  Google Scholar 

  48. Simonenko, E.P., Simonenko, N.P., Kopitsa, G.P., Almasy, L., Gorobtsov, F.Yu., Sevast’yanov, V.G., and Kuznetsov, N.T., Heat-treatment-induced evolution of the mesostructure of finely divided Y3Al5O12 produced by the sol-gel method, Russ. J. Inorg. Chem., 2018, vol. 63, pp. 691–699.

    Article  CAS  Google Scholar 

  49. Simonenko, E.P., Simonenko, N.P., Kopitsa, G.P., Mokrushin, A.S., Khamova, T.V., Sizova, S.V., Tsvigun, N.V., Pipich, V., Gorshkova, Y.E., Sevastyanov, V.G., and Kuznetsov, N.T., A sol-gel synthesis and gas-sensing properties of finely dispersed ZrTiO4, Mater. Chem. Phys., 2019, vol. 225, pp. 347–357.

    Article  CAS  Google Scholar 

  50. Averin, I.A., Karmanov, A.A., Moshnikov, V.A., Pronin, I.A., Igoshina, S.E., Sigaev, A.P., and Terukov, E.I., Correlations in infrared spectra of nanostructures based on mixed oxides, Phys. Solid. State, 2015, vol. 57, pp. 2373–2381.

    Article  CAS  Google Scholar 

  51. Tsai, M.T., Effects of hydrolysis processing on the character of forsterite gel fibers. Part I: Preparation, spinnability and molecular structure, J. Eur. Ceram. Soc., 2002, vol. 22, no. 7, pp. 1073–1083.

    Article  CAS  Google Scholar 

  52. Niznansky, D. and Rehspringer, J.L., Infrared study of SiO2 sol to gel evolution and gel aging, J. Non-Cryst. Solids, 1995, vol. 180, nos. 2–3, pp. 191–196.

    Article  CAS  Google Scholar 

  53. Wang, S.-T., Chen, M.-L., and Feng, Yu-Qi, A meso-macroporous borosilicate monolith prepared by a sol-gel method, Microporous Mesoporous Mater., 2012, vol. 151, pp. 250–254.

    Article  CAS  Google Scholar 

  54. Zha, C., Atkins, G.R., and Masters, A.F., Preparation and spectroscopy of anhydrous borosilicate sols and their application to thin films, J. Non-Cryst. Solids, 1998, vol. 242, pp. 63–67.

    Article  CAS  Google Scholar 

  55. Kaşgöz, A., Misono, T., and Abe, Y., Sol-gel preparation of borosilicates, J. Non-Cryst. Solids, 1999, vol. 243, pp. 3168–3174.

    Article  Google Scholar 

  56. Levitski, I.A. and Gailevich, S., Influence of divalent cations on the process of phase separation in borosilicate glasses, Vest. Nats. Akad. Nauk Belarusi, Ser. Khim. Nauk, 2003, no. 3, pp. 111–116.

  57. Lee, Y.-Y., Ho, W.-J., Syu, J.-K., Lai, Q.-R., and Yu, C.-M., 7.9% efficiency silicon solar cells by using spin-on films processes, in PIERS Proceedings, 2011, Suzhou, China.

  58. Dominguez, M.A., Luna-Lopez, J.A., Moreno, M., Orduna, A., Garcia, M., Alcantara, S., and Soto, S., Solution-processed transparent dielectric based on spin-on glass for electronic devices, Rev. Mex. Fis., 2016, vol. 62, pp. 282–284.

    Google Scholar 

  59. Das, A., Development of high-efficiency boron diffused silicon solar cells, PhD Dissertation, Georgia Inst. Technol., 2012.

  60. Zeng, K., Wallace, J.S., Heimburger, C., Sasaki, K., Kuramata, A., Masui, T., Gardella, J.A., and Singisetti, U., Ga2O3 MOSFETs using spin-on-glass source/drain doping technology, IEEE Electron Device Lett., 2017, vol. 38, no. 4, pp. 513–516.

    Article  CAS  Google Scholar 

  61. Singha, B. and Solanki, C.S., Boron-rich layer properties formed by boron spin on dopant diffusion in n-type silicon, Mater. Sci. Semicond. Proc., 2017, vol. 57, pp. 83–89.

    Article  CAS  Google Scholar 

  62. Yang, N., Li, S., Yang, J., Li, H., Ye, X., Liu, C., and Yuan, X., Avoidance of boron rich layer formation in the industrial boron spin-on dopant diffused n-type silicon solar cell without additional oxidation process, J. Mater. Sci.: Mater. Electron., 2018, vol. 29, pp. 20081–20086.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Khamova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilova, O.A., Tsvetkova, I.N., Khamova, T.V. et al. Sol-Gel Synthesis and Structure of Nanocomposites Based on Tetraethoxysilane and Boron Compounds. Glass Phys Chem 47 (Suppl 1), S48–S62 (2021). https://doi.org/10.1134/S1087659621070099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621070099

Keywords:

Navigation