Skip to main content
Log in

Structural, Dielectric and AC Conductivity of Multicomponent Borotellurite Glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Structural, dielectric and conductivity of multicomponent borotellurite glasses have been thorougly investigated. Noncrystallinity confirmed through XRD and structural units identified from FTIR spectra. Dielectric constant and loss decreased with increase of frequency and temperature. Polarization parameters such as molar volume, (Vm), molar refraction (Rm), molar polarizability (αm), electronic polarizability (αe) and metallization criterion (M) were determined. Power law behavior of ac conductivity has been verified and frequency exponent obtained. Activation energy of dc and ac conductivity obtained from Mott’s small polaron hopping model fits and discussed. Frequency exponent decreased with temperature as predicted by correlated barrier hopping model. Hunt’s model fit to conductivity data yielded similar frequency exponent values as obtained from power law. Linear relation between ac and dc conductivity has been observed as predicted by Barton, Nakajima and Namikawa theory. Time-temperature superposition principle has been verified by drawing master curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Selvi, S., Marimuthu, K., and Muralidharan, G., Structural and luminescence behaviour of Sm3+ ions doped lead boro-telluro-phosphate glasses, J. Lumin., 2014, vol. 159, pp. 207–218.

    Article  Google Scholar 

  2. Lakshminarayana, G., Kawa, M., Kaky, BakiS.O., Lira, A., Priyanka Nayar, Kityk, I.V., and Mahdi, M.A., Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R= Li, Na, and K)/MO (M= Mg, Ca, and Pb) glasses, J. Alloys Compd., 2017, vol. 690, pp. 799–816.

    Article  CAS  Google Scholar 

  3. Sasikala, T., Rama Moorthy, L., and Mohan Babu, A., Optical and luminescent properties of Sm3+ doped tellurite glasses, Spectrochim. Acta, Part A, 2013, vol. 104, pp. 445–450.

    Article  CAS  Google Scholar 

  4. Barczyński, R.J., Król, P., and Murawski, L., AC and DC conductivities in V2O5–P2O5 glasses containing alkaline ions, J. Non-Cryst. Solids, 2010, vol. 356, pp. 1965–1967.

    Article  Google Scholar 

  5. Ersundu, A.E., Çelikbilek, M., and Aydin, S., Characterization of B2O3 and/or WO3 containing tellurite glasses, J. Non-Cryst. Solids, 2012, vol. 358, pp. 641–647.

    Article  CAS  Google Scholar 

  6. Anand Pandarinath, M., Upender, G., Narasimha Rao, K., and Suresh Babu, D., Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO, J. Non-Cryst. Solids, 2016, vol. 433, pp. 60–67.

    Article  CAS  Google Scholar 

  7. Nimitha Prabhu, S., Vinod, H., Akshatha, W., Sayyed, M.I., Agar, O., and Sudha Kamath, D., Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses, J. Non-Cryst. Solids, 2019, vol. 515, pp. 116–124.

    Article  Google Scholar 

  8. Vijayalakshmi, L., Naveen Kumar, K., Bhaskar Kumar, G., and Pyung, H., Structural, dielectric and photoluminescence properties of Nd3+ doped Li2O–LiF–B2O3–ZnO multifunctional optical glasses for solid state laser applications, J. Non-Cryst. Solids, 2017, vol. 475, pp. 28–37.

    Article  CAS  Google Scholar 

  9. Madhukar Reddy, C., Deva Prasad Raju, B., John Sushma, N., Dhoble, N.S., and Dhoble, S.J., A review on optical and photoluminescence studies of Re3+ (Re = Sm, Dy, Eu, Tb and Nd) ions doped LCZSFB glasses, Renewable Sustainable Energy Rev., 2015, vol. 51, pp. 566–584.

    Article  CAS  Google Scholar 

  10. Ravi, O., Madhukar Reddy, C., Manoj, L., Deva, P., and Raju, B., Structural and optical studies of Sm3+ ions doped niobium borotellurite glasses, J. Mol. Struct., 2012, vol. 1029, pp. 53–59.

    Article  CAS  Google Scholar 

  11. Amarkumar, M., Sankarappa, T., Sujatha, T., Devidas, G.B., and Abdul, A.P., Investigation of physical and spectroscopic properties of WO3 doped zinc–lithium–dysprosium borotellurite glasses, Opt. Mater., 2020, vol. 109, 110282.

    Article  Google Scholar 

  12. Ali, A.A. and Shaaban, M.H., Electrical properties of LiBBaTe glass doped with Nd2O3, Solid State Sci., 2010, vol. 12, pp. 2148–2154.

    Article  CAS  Google Scholar 

  13. Barde, R.V. and Waghuley, S.A., Study of AC electrical properties of V2O5–P2O5–B2O3–Dy2O3 glasses, Ceram. Int., 2013, vol. 6, pp. 6303–6311.

    Article  Google Scholar 

  14. Dhankhar, S., Kundu, R.S., Parmar, R., Murugavel, S., Punia, R., and Kishore, N., Electronic transport and relaxation studies in bismuth modified zinc boro-tellurite glasses, Solid State Sci., 2015, vol. 48, pp. 230–236.

    Article  Google Scholar 

  15. Suresh, S., Prasad, M., and Chandra Mouli, V., Ac conductivity and impedance measurements in alkali boro-tellurite glasses, J. Non-Cryst. Solids, 2010, vol. 356, pp. 1599–1603.

    Article  Google Scholar 

  16. Jyothi, L., Upender, G., Kuladeep, R., and Narayana Rao, D., Structural, thermal, optical properties and simulation of white light of titanium–tungstate–tellurite glasses doped with dysprosium, Mater. Res. Bull., 2014, vol. 50, pp. 424–431.

    Article  CAS  Google Scholar 

  17. Amarkumar, M., Sankarappa, T., Devidas, G.B., and Sujatha, T., Dielectric relaxation in zinc–borotellurite glasses doped with alkali, transition and rare earth oxides, J. Phys.: Conf. Ser., 2020, vol. 1451, 012014.

    Google Scholar 

  18. Mahani, R.M. and Marzouk, S.Y., AC conductivity and dielectric properties of SiO2–Na2O–B2O3–Gd2O3 glasses, J. Alloys Compd., 2013, vol. 579, pp. 394–400.

    Article  CAS  Google Scholar 

  19. Amarkumar, M., Sankarappa, T., Ashwajeet, J.S., and Sujatha, T., Polaron conduction mechanisms in (B2O3)–(TeO2)–(MoO3)–(Er2O3) glasses, J. Phys.: Conf. Ser., 2019, vol. 1172, 012012.

    CAS  Google Scholar 

  20. Lakshminarayana, G., Baki, S.O., Lira, A., Kityk, I.V., and Mahdi, M.A., Structural, thermal, and optical absorption studies of Er3+, Tm3+ and Pr3+- doped borotellurite glasses, J. Non-Cryst. Solids, 2017, vol. 459, pp. 150–159.

    Article  CAS  Google Scholar 

  21. Upender, G., Sameera, DeviCh., Kamalaker, V., and Chandra Mouli, V., The structural and spectroscopic investigations of ternary tellurite glasses, doped with copper, J. Alloys Compd., 2011, vol. 509, pp. 5887–5892.

    Article  CAS  Google Scholar 

  22. Annapoorani, K., Basavapoornima, Ch., Suriya Murthy, N., and Marimuthu, K., Investigations on structural and luminescence behavior of Er3+ doped lithium zinc borate glasses for lasers and optical amplifier applications, J. Non-Cryst. Solids, 2016, vol. 447, pp. 273–282.

    Article  CAS  Google Scholar 

  23. Karunakaran, R.T., Marimuthu, K., Surendra Babu, S., and Arumugam, S., Dysprosium doped alkali fluoroborate glasses-thermal, structural and optical investigations, J. Lumin., 2010, vol. 130, pp. 1067–1072.

    Article  CAS  Google Scholar 

  24. Ashwajeet, J.S. and Sankarappa, T., Dielectric and AC conductivity studies in Li2O–CoO–B2O3–TeO2 glasses, Ionics, 2017, vol. 3, pp. 627–636.

    Google Scholar 

  25. Prashant Kumar, M., Sankarappa, T., Vijaya Kumar, B., and Nagaraja, N., Dielectric relaxation studies in transition metal ions doped tellurite glasses, Solid State Sci., 2009, vol. 11, pp. 214–218.

    Article  CAS  Google Scholar 

  26. Pravin, K.S., Sharma, S.K., Tripathi, S.K., and Dwivedi, D.K., Study of dielectric relaxation and thermally activated a.c. conduction in multicomponent Ge10 – xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses using CBH model, Results Phys., 2018, vol. 11, pp. 223–236.

  27. Ibrahim, S.E., Rammah, Y.S., Hager, I.Z., and El-Mallawany, R., UV and electrical properties of TeO2–WO3–Li2O–Nb2O5/Sm2O3/Pr6O11/Er2O3 glasses, J. Non-Cryst. Solids, 2018, vol. 498, pp. 443–447.

    Article  CAS  Google Scholar 

  28. Shaaban, M.H., Ali, A.A., and El-Nimr, M.K., The AC conductivity of tellurite glasses doped with Ho2O3, Mater. Chem. Phys., 2006, vol. 96, pp. 433–438.

    Article  CAS  Google Scholar 

  29. Srinivasa, RaoL., Ac conductivity and polarization phenomenon of Li2O-MoO3-B2O3: V2O5 glasses, J. Alloys Compd., 2019, vol. 787, pp. 1280–1289.

    Article  Google Scholar 

  30. Arti, Ya., Manjeet Dahiya, S., Pinki, N., Hooda, A., Agarwal, A., and Khasa, S., Electrical characterization of lithium bismuth borate glasses containing cobalt/vanadium ions, Solid State Ionics, 2017, vol. 312, pp. 21–31.

    Article  Google Scholar 

  31. Halimah, M.K., Faznny, M.F., Azlan, M.N., and Sidek, H.A.A., Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions, Results Phys., 2017, vol. 7, pp. 581–589.

    Article  Google Scholar 

  32. Umar, S.A., Halimah, M.K., Chan, K.T., and Latif, A.A., Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses, J. Non-Cryst. Solids, 2017, vol. 471, pp. 101–109.

    Article  CAS  Google Scholar 

  33. Abdel-Baki, M., El-Diasty, F., and Fathy Abdel Wahab, A., Optical characterization of xTiO2–(60 – x) SiO2–40Na2O glasses: Absorption edge, Fermi level, electronic polarizability and optical basicity, Opt. Commun., 2006, vol. 261, pp. 65–70.

    Article  CAS  Google Scholar 

  34. Dimitrov, V., and Komatsu, T., Classification of oxide glasses: A polarizability approach, J. Solid State Chem., 2005, vol. 178, pp. 831–846.

    Article  CAS  Google Scholar 

  35. Amarkumar, M., Sankarappa, T., Sujatha, T., Ashwajeet, J.S., and Devidas, G.B., Dielectric properties and AC conductivity of rare earth ions doped borotellurite glasses, AIP Conf. Proc., 2019, vol. 2161, 020026.

    Article  Google Scholar 

  36. Sankarappa, T., Prashant Kumar, M., Devidas, G.B., Nagaraja, N., and Ramakrishnareddy, R., AC conductivity and dielectric studies in V2O5–TeO2 and V2O5–CoO-TeO2 glasses, J. Mol. Struct., 2008, vol. 889, pp. 308–315.

    Article  CAS  Google Scholar 

  37. Hanumantharaju, N., Sriprakash, G., and Veeranna Gowda, V.C., Electrical conductivity and dielectric behaviour of lithium diborate glasses containing Gd3+ ions, J. Non-Cryst. Solids, 2019, vol. 512, pp. 103–111.

    Article  CAS  Google Scholar 

  38. Sankarappa, T., Prashant Kumar, M., Devidas, G.B., Nagaraja, N., and Ramakrishna Reddy, R., AC conductivity and dielectric studies in V2O5–TeO2 and V2O5–CoO–TeO2 glasses, J. Mol. Struct., 2008, vol. 889, pp. 308–315.

    Article  CAS  Google Scholar 

  39. Sayantani das, T.M., Sinha, T.P., and Sarun, P.M., Dielectric relaxation and study of electrical conduction mechanism in BaZr0.1Ti0.9O3 ceramics by correlated barrier hopping model, Mater. Sci. (Poland), 2018, vol. 36, pp. 112–122.

    Google Scholar 

  40. Imran, Z., Rafiq, M.A., Ahmad, M., Rasool, K., Batool, S.S., and Hasan, M.M., Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats, AIP Adv., 2013, vol. 3, 032146.

    Article  CAS  Google Scholar 

  41. El Mkami, H., Deroide, B., Backov, R., and Zanchetta, J.V., DC and AC conductivities of (V2O5)x(B2O3)1–x oxide glasses, J. Phys. Chem. Solids, 2000, vol. 61, pp. 819–826.

    Article  CAS  Google Scholar 

  42. Singh, D.P., Shahi, K., and Kamal, K.K., Superlinear frequency dependence of AC conductivity and its scaling behavior in xAgI–(1 – x) AgPO3 glass superionic conductors, Solid State Ionics, 2016, vol. 287, pp. 89–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sankarappa.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amarkumar Malge, Sankarappa, T., Sujatha, T. et al. Structural, Dielectric and AC Conductivity of Multicomponent Borotellurite Glasses. Glass Phys Chem 47 (Suppl 1), S1–S9 (2021). https://doi.org/10.1134/S1087659621070038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621070038

Keywords:

Navigation