Skip to main content
Log in

Increasing the Sintering Rate and Strength of ZrO2–Al2O3 Ceramic Materials by Iron Oxide Additions

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have prepared powders and ceramic composite materials in the ZrO2–Al2O3 system containing 10 and 20 wt % Al2O3 and examined the effect of ferric oxide additions on the linear shrinkage, phase composition, porosity, microstructure, and mechanical properties of the ZrO2–Al2O3 ceramic materials. The results demonstrate that the addition of ferric oxide leads to a considerable increase in linear shrinkage and ensures porosity as low as under 1% even at a sintering temperature of 1450°C in both composite materials. Moreover, small amounts of the additive stabilize the tetragonal phase of ZrO2, whereas increasing the Fe content to 3 mol % leads to an increase in the amount of the monoclinic phase. We have obtained densely sintered ZrO2–10% Al2O3 and ZrO2–20% Al2O3 ceramic materials at 1450°C, with a bending strength of up to 760 and 475 MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Balagopal, N., Warrier, K.G.K., and Damodaran, A.D., Alumina–ceria composite powders through a flash combustion technique, J. Mater. Sci. Lett., 1991, vol. 10, no. 19, pp. 1116–1118.

    Article  CAS  Google Scholar 

  2. Deshmukh, R.M. and Kulkarni, S.S., A review on biomaterials in orthopedic bone plate application, Int. J. Current Eng. Technol., 2015, vol. 5, no. 4, pp. 2587–2591.

    Google Scholar 

  3. Nevarez-Rascon, A., Gonzalez-Lopez, S., Acosta-Torres, L.S., Nevarez-Rascon, M.M., and Orrantia-Borunda, E., Synthesis, biocompatibility and mechanical properties of ZrO2–Al2O3 ceramics composites, Dental Mater. J., 2016, vol. 35, no. 3, pp. 392–398.

    Article  CAS  Google Scholar 

  4. Smirnov, V.V., Krylov, A.I., Smirnov, S.V., Goldberg, M.A., Antonova, O.S., Kochanov, G.P., and Barinov, S.M., Sintering and microstructure of materials based on the fluorohydroxyapatite–ZrO2–Al2O3 system, Inorg. Mater., 2016, vol. 52, no. 10, pp. 1025–1030.

    Article  CAS  Google Scholar 

  5. Matsui, K., Ohmichi, N., Ohgai, M., Yoshida, H., and Ikuhara, Y., Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal, J. Mater. Res., 2006, vol. 21, no. 9, pp. 2278–2289.

    Article  CAS  Google Scholar 

  6. Jayaseelan, D., Nishikawa, T., Awaji, H., and Gnanam, F.D., Pressureless sintering of sol–gel derived alumina–zirconia composites, Mater. Sci. Eng., A, 1998, vol. 256, nos. 1–2, pp. 265–270.

    Article  Google Scholar 

  7. Akin, I., Yilmaz, E., Sahin, F., Yucel, O., and Goller, G., Effect of CeO2 addition on densification and microstructure of Al2O3–YSZ composites, Ceram. Int., 2011, vol. 37, no. 8, pp. 3273–3280.

    Article  CAS  Google Scholar 

  8. Xu, X., Xu, X., Liu, J., Hong, W., and Hou, F., Low-temperature fabrication of Al2O3–ZrO2 (Y2O3) nanocomposites through hot pressing of amorphous powders, Ceram. Int., 2016, vol. 42, no. 13, pp. 15 065–15 071.

  9. Flegler, A.J., Burye, T.E., Yang, Q., and Nicholas, J.D., Cubic yttria stabilized zirconia sintering additive impacts: a comparative study, Ceram. Int., 2014, vol. 40, no. 10, pp. 16 323–16 335.

  10. Foschini, C.R., Souza, D.P.F., Paulin Filho, P.I., and Varela, J.A., AC impedance study of Ni, Fe, Cu, Mn doped ceria stabilized zirconia ceramics, J. Eur. Ceram. Soc., 2001, vol. 21, no. 9, pp. 1143–1150.

    Article  CAS  Google Scholar 

  11. Guo, F. and Xiao, P., Effect of Fe2O3 doping on sintering of yttria-stabilized zirconia, J. Eur. Ceram. Soc., 2012, vol. 32, no. 16, pp. 4157–4164.

    Article  CAS  Google Scholar 

  12. Smirnov, V.V., Obolkina, T.O., Krylov, A.I., Smirnov, S.V., Goldberg, M.A., Antonova, O.S., and Barinov, S.M., Agglomeration and properties of ceramics based on partially stabilized zirconium dioxide containing oxides of aluminum and iron, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 1, pp. 121–124.

    Article  Google Scholar 

  13. Ye, Y., Li, J., Zhou, H., and Chen, J., Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics, Ceram. Int., 2008, vol. 34, no. 8, pp. 1797–1803.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation President’s Grant no. MK-5661.2018.8 and the Russian Federation President’s Scholarship no. SP-3724.2018.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Goldberg.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obolkina, T.O., Goldberg, M.A., Smirnov, V.V. et al. Increasing the Sintering Rate and Strength of ZrO2–Al2O3 Ceramic Materials by Iron Oxide Additions. Inorg Mater 56, 182–189 (2020). https://doi.org/10.1134/S0020168520020156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520020156

Keywords:

Navigation