Skip to main content
Log in

Current State of Studies on Synthesis and Application of Zinc Stannate (Review)

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The published works representing the current state of research in the field of the synthesis and application of zinc stannate are reviewed. The data on crystalline modifications of ZnSnO3 are provided and the primary areas of the application of zinc stannate are investigated. Options of various synthesis methods, such as chemical vapor deposition, reactions under high pressure, hydrothermal synthesis, ion-exchange and solid-phase reactions, the coprecipitation method, and the sol-gel method, are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Moshnikov, V.A., Gracheva, I.E., Kuznezov, V.V., Maximov, A.I., Karpova, S.S., and Ponomareva, A.A., Hierarchical nanostructured semiconductor porous materials for gas sensors, J. Non-Cryst. Solids, 2010, vol. 356, nos. 37–40, pp. 2020–2025.

    Article  Google Scholar 

  2. Bakin, A.S., Bestaev, M.V., Dimitrov, D.Tz., Moshnikov, V.A., and Tairov, Yu.M., SnO2 based gas sensitive sensor, Thin Solid Films, 1997, vol. 296, nos. 1–2, pp. 168–171.

    Article  Google Scholar 

  3. Pronin, I.A., Dimitrov, D.Tz., Krasteva, L.K., Papazova, K.I., Averin, I.A., Chanachev, A.S., Bojinova, A.S., Georgieva, A.Ts., Yakushova, N.D., and Moshnikov, V.A., Theoretical and experimental investigations of ethanol vapour sensitive properties of junctions composed from produced by sol-gel technology pure and Fe modified nanostructured ZnO thin films, Sens. Actuators, A, 2014, vol. 206, pp. 88–96.

    Article  Google Scholar 

  4. Bobkov, A.A., Maksimov, A.I., Moshnikov, V.A., Somov, P.A., and Terukov, E.I., Zinc-oxide-based nanostructured materials for heterostructure solar cells, Semiconductors, 2015, vol. 49, no. 10, pp. 1357–1360.

    Article  Google Scholar 

  5. Kalinina, M.V., Moshnikov, V.A., Tikhonov, P.A., Tomaev, V.V., and Drozdova, I.A., Electron microscopic investigation of the structure of gas-sensitive nanocomposites prepared by the hydropyrolytic method, Glass Phys. Chem., 2003, vol. 29, no. 3, pp. 322–327.

    Article  Google Scholar 

  6. Shilova, O.A., Silicate nanosized films prepared by the sol–gel method for use in planar technology for fabricating semiconductor gas sensors, Glass Phys. Chem., 2005, vol. 31, no. 2, pp. 201–218.

    Article  Google Scholar 

  7. Ivetic, T.B., Fincur, N.L., Dacanin, L.R., Abramovic, B.F., and Lukic-Petrovic, S.R., Ternary and coupled binary zinc tin oxide nanopowders: synthesis, characterization, and potential application in photocatalytic processes, Mater. Res. Bull., 2015, vol. 62, pp. 114–121.

    Article  Google Scholar 

  8. Khamova, T.V., Kolovangina, E.S., Myakin, S.V., Sychov, M.M., and Shilova, O.A., Modification of submicron barium titanate particles via sol-gel synthesis of interface layers of SiO2 for fabrication of polymer-inorganic composites with improved dielectric properties, Russ. J. Gen. Chem., 2013, vol. 83, no. 8, pp. 1594–1595.

    Article  Google Scholar 

  9. Sychov, M., Nakanishi, Y., Vasina, E., Eruzin, A., Mjakin, S., Khamova, T., Shilova, O., and Mimura, H., Core-shell approach to control acid-base properties of surface of dielectric and permittivity of its composite, Chem. Lett., 2015, vol. 44, no. 2, pp. 197–199.

    Article  Google Scholar 

  10. Abrashova, E.V., Moshnikov, V.A., Maraeva, E.V., Kononova, I.E., and Vorob’ev, D.M., Synthesis and study of transparent multicomponent metal oxide for use in multisensor system, J. Phys.: Conf. Ser., 2016, vol. 735, p. 012008.

    Google Scholar 

  11. Kononova, I.E., Vorobiev, D.M., Dimitrov, D.Tz., Georgieva, A.Ts., and Moshnikov, V.A., Room temperature acetone vapor-sensing properties of a mesoporous zinc stannate layer, Bulg. Chem. Commun., 2016, vol. 48, no. 2, pp. 225–231.

    Google Scholar 

  12. Bora, T., Al-Hinai, M.H., Al-Hinai, A.T., and Dutta, J., Phase transformation of metastable ZnSnO3 upon thermal decomposition by in-situ temperature-dependent Raman spectroscopy, J. Am. Ceram. Soc., 2015, pp. 1–6.

  13. Nakayama, M., Nogami, M., Yoshida, M., Katsumata, T., and Inaguma, Y., First-principles studies on novel polar oxide ZnSnO3; pressure-induced phase transition and electric properties, Adv. Mater., 2010, vol. 22, no. 23, pp. 2579–2582.

    Article  Google Scholar 

  14. Wang, H., Huang, H., and Wang, B., First-principles study of structural, electronic, and optical properties of ZnSnO3, Solid State Commun., 2009, vol. 149, no. 41, pp. 1849–1852.

    Article  Google Scholar 

  15. Miyauchi, M., Liu, Z., Zhao, Z.G., Anandan, S., and Hara, K., Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices, Chem. Commun., 2010, vol. 46, no. 9, pp. 1529–1531.

    Article  Google Scholar 

  16. Gou, H., Gao, F., and Zhang, J., Structural identification, electronic and optical properties of ZnSnO3: First principle calculations, Comput. Mater. Sci., 2010, vol. 49, no. 3, pp. 552–555.

    Article  Google Scholar 

  17. Ge, N.N., Liu, C.M., Cheng, Y., Chen, X.R., and Ji, G.F., First-principles calculations for elastic and electronic properties of ZnSnO3 under pressure, Phys. B: Condens. Matter, 2011, vol. 406, no. 4, pp. 742–748.

    Article  Google Scholar 

  18. Inaguma, Y., Sakurai, D., Aimi, A., Yoshida, M., Katsumata, T., Mori, D., Yeon, J., and Halasyamani, P.S., Dielectric properties of a polar ZnSnO3 with LiNbO3-type structure, J. Solid State Chem., 2012, vol. 195, pp. 115–119.

    Article  Google Scholar 

  19. Zhu, W.-L., Chen, X.-Y., Zhao, Y.-J., and Lai, T.-S., Theoretical study of stability and electronic structure of the new type of ferroelectric materials XSnO3 (X = Mn, Zn, Fe, Mg), Int. J. Mod. Phys. B, 2014, vol. 28, no. 31, p. 1450224.

    Article  Google Scholar 

  20. Wu, J.M., Chen, C.Y., Zhang, Y., Chen, K.H., Yang, Y., Hu, Y., He, J.H., and Wang, Z.L., Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire, ACS Nano, 2012, vol. 6, no. 5, pp. 4369–4374.

    Article  Google Scholar 

  21. Wu, J.M., Xu, C., Zhang, Y., Yang, Y., Zhou, Y., and Wang, Z.L., Flexible and transparent nanogenerators based on a composite of lead-free ZnSnO3 triangular-belts, Adv. Mater., 2012, vol. 24, no. 45, pp. 6094–6099.

    Article  Google Scholar 

  22. Alam, M.M., Ghosh, S.K., Sultana, A., and Mandal, D., Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation, Nanotecnology, 2015, vol. 26, no. 16, p. 165403.

    Article  Google Scholar 

  23. Yu-Sheng, S. and Tian-Shu, Z., Preparation, structure and gas-sensing properties of ultramicro ZnSnO3 powder, Sens. Actuators, B, 1993, vol. 12, no. 1, pp. 5–9.

    Article  Google Scholar 

  24. Zeng, Y., Zhang, K., Wang, X., Sui, Y., Zou, B., Zheng, W., and Zou, G., Rapid and selective H2S detection of hierarchical ZnSnO3 nanocages, Sens. Actuators, B, 2011, vol. 159, no. 1, pp. 245–250.

    Article  Google Scholar 

  25. Zeng, Y., Wang, X., and Zheng, W., Synthesis of novel hollow ZnSnO3 cubic nanocages and their HCHO sensing properties, J. Nanosci. Nanotechnol., 2013, vol. 13, no. 2, pp. 1286–1290.

    Article  Google Scholar 

  26. Xue, X.Y., Feng, P., Wang, Y.G., and Wang, T.H., Extremely high oxygen sensing of individual ZnSnO3 nanowires arising from grain boundary barrier modulation, Appl. Phys. Lett., 2007, vol. 91, no. 2, p. 2111.

    Google Scholar 

  27. Patil, L.A., Pathan, I.G., Suryawanshi, D.N., Bari, A.R., and Rane, D.S., Spray pyrolyzed ZnSnO3 nanostructured thin films for hydrogen sensing, Proc. Mater. Sci., 2014, vol. 6, pp. 1557–1565.

    Article  Google Scholar 

  28. Fan, H., Zeng, Y., Xu, X., Lv, N., and Zhang, T., Hydrothermal synthesis of hollow ZnSnO3 microspheres and sensing properties toward butane, Sens. Actuators, B, 2011, vol. 153, no. 1, pp. 170–175.

    Article  Google Scholar 

  29. Sin, N.D.M., Musa, M.Z., Mamat, M.H., Ahmad, S., Abdul, A.A., and Rusop, M., High sensitivity humidity sensor based on ZnSnO3 composite nanocube, Key Eng. Mater., 2014, vol. 594, pp. 872–876.

    Google Scholar 

  30. Qin, Y., Zhang, F., Du, X., Huang, G., Liuac, Y., and Wang, L., Controllable synthesis of cube-like ZnSno3 TiO2 nanostructures as lithium ion battery anodes, J. Mater. Chem. A, 2015, vol. 3, no. 6, pp. 2985–2990.

    Article  Google Scholar 

  31. Ko, J.H., Kim, I.H., Kim, D., Lee, K.S., Lee, T.S., Cheong, B., and Kim, W.M., Transparent and conducting Zn–Sn–O thin films prepared by combinatorial approach, Appl. Surf. Sci., 2007, vol. 253, no. 18, pp. 7398–7403.

    Article  Google Scholar 

  32. Lo, M.K., Lee, S.Y., and Chang, K.S., Study of ZnSnO3-nanowire piezophotocatalyst using two-step hydrothermal synthesis, J. Phys. Chem. C, 2015, vol. 119, no. 9, pp. 5218–5224.

    Article  Google Scholar 

  33. Baruah, S. and Dutta, J., Zinc stannate nanostructures: Hydrothermal synthesis, Sci. Technol. Adv. Mater., 2011, vol. 12, no. 1, p. 013 004.

    Article  Google Scholar 

  34. Xu, J., Jia, X., Lou, X., Xi, G., Han, J., and Gao, Q., Selective detection of HCHO gas using mixed oxides of ZnO/ZnSnO3, Sens. Actuators, B, 2007, vol. 120, no. 2, pp. 694–699.

    Article  Google Scholar 

  35. Datta, A., Mukherjee, D., Kons, C., Witanachchi, S., and Mukherjee, P., Evidence of superior ferroelectricity in structurally welded ZnSnO3 nanowire arrays, Small, 2014, vol. 10, no. 20, pp. 4093–4099.

    Google Scholar 

  36. Kovacheva, D. and Petrov, K., Preparation of crystalline ZnSnO3 from Li2SnO3 by low-temperature ion exchange, Solid State Ionics, 1998, vol. 109, no. 3, pp. 327–332.

    Article  Google Scholar 

  37. Peiteado, M., de Frutos, J., Fernández, J.F., Iglesias, Y., and Caballero, A.C., Preparation of ZnO-SnO2 ceramic materials by a coprecipitation method, Bol. Soc. Espan. Ceram. vidrio, 2006, vol. 45, no. 3, pp. 158–162.

    Article  Google Scholar 

  38. Morozova, L.V., Belousova, O.L., Panova, T.I., Shornikov, R.S., and Shilova, O.A., Sol-gel synthesis of nanocrystalline aluminum-magnesium spinel and obtaining on its basis dense, porous and transparent ceramics, Fiz. Khim. Stekla, 2012, vol. 38, no. 6, pp. 768–776.

    Google Scholar 

  39. Shilova, O.A., Antipov, V.N., Tikhonov, P.A., Kruchinina, I.Yu., Arsent’ev, M.Yu., Panova, T.I., Morozova, L.V., Moskovskaya, V.V., and Kalinina, M.V., Ceramic nanocomposites based on oxides of transition metals for ionistors, Glass Phys. Chem., 2013, vol. 39, no. 5, pp. 570–578.

    Article  Google Scholar 

  40. Para, A., Reshi, H.A., and Shelke, V., Synthesis of ZnSnO3 nanostructure by sol gel method, AIP Conf. Proc., 2016, vol. 1731, p. 050002.

    Article  Google Scholar 

  41. Choi, Y.Y., Kang, S.J., and Kim, H.K., Rapid thermal annealing effect on the characteristics of ZnSnO3 films prepared by RF magnetron sputtering, Curr. Appl. Phys., 2012, vol. 12, pp. S104–S107.

    Article  Google Scholar 

  42. Choi, K.H., Siddiqui, G.U., Yang, B., and Mustafa, M., Synthesis of ZnSnO3 nanocubes and thin film fabrication of (ZnSnO3/PMMA) composite through electrospray deposition, J. Mater. Sci.: Mater. Electron., 2015, vol. 26, no. 8, pp. 1–7.

    Google Scholar 

Download references

FUNDING

The present study was performed with the support of the Russian Science Foundation (project no. 17-79-20239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Nalimova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalimova, S.S., Maksimov, A.I., Matyushkin, L.B. et al. Current State of Studies on Synthesis and Application of Zinc Stannate (Review). Glass Phys Chem 45, 251–260 (2019). https://doi.org/10.1134/S1087659619040096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659619040096

Keywords:

Navigation