Skip to main content
Log in

Solvent-Free Synthesis of ZnO Nanoparticles by a Simple Thermal Decomposition Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This paper reports on a novel processing route for producing ZnO nanoparticles by solid-state thermal decomposition of zinc(II) acetate nanostructures obtained by the sublimation of zinc(II) acetate powder. The sublimation process of the Zn(OAc)2 powder was carried out in the temperature 150 °C for 2 h. In addition, nanoparticles of ZnO were obtained by solid-state thermal decomposition of the synthesized Zn(OAc)2 nanostructures. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, and energy dispersive X-ray spectroscopy. The sublimation process of the Zn(OAc)2 powder was carried out within the range of 150–180 °C. The XRD studies indicated the production of pure hexagonal ZnO nanoparticles after thermal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. M. Hosseinpour-Mashkani and M. Ramezani (2014). Mater. Lett. 130, 259–262.

    Article  CAS  Google Scholar 

  2. S. M. Hosseinpour-Mashkani, M. Ramezani, and M. Vatanparast (2014). Mater. Sci. Semicond. Process. 26, 112–118.

    Article  CAS  Google Scholar 

  3. S. M. Hosseinpour-Mashkani, K. Venkateswara Rao, Z Chamanzadeh, International Conference on Nanoscience Engineering and Technology ICONSET (IEEE¸ 2011), pp. 653–655.

  4. K. Westermark, H. Rensmo, T. A. C. Lees, J. G. Vos, and H. T. Siegbahn (2002). J. Phys. Chem. B. 10, 10108–10113.

    Article  Google Scholar 

  5. H. M. Lin, S. J. Tzeng, P. J. Hsiau, and W. L. Tsai (1998). Nanostruct. Mater. 10, 465–477.

    Article  CAS  Google Scholar 

  6. M. Nanu, J. Schoonman, and A. Goossens (2012). Nano Lett. 5, 1716–1720.

    Article  Google Scholar 

  7. I. Tsuji, H. Kato, and A. Kudo (2011). Angew. Chem. Int. Ed. 44, 356–361.

    Google Scholar 

  8. S. M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, and K. Venkateswara-Rao (2012). Mater. Res. Bull. 47, 314–319.

    Article  Google Scholar 

  9. S. M. Hosseinpour-Mashkani, K. Venkateswara-Rao, and Z. Chamanzadeh (2011). IEEE ICONSET 47, 653–659.

  10. W. Zhou, Z. Yin, D. H. Sim, H. Zhang, J. Ma, H. H. Hng, and Q. Yan (2011). Nanotechnology 22, 195–199.

    Google Scholar 

  11. M. L. A. Aguilera, M. Ortega-Lopez, V. M. S. Resendiz, J. A. Hernandez, and M. A. G. Trujillo (2003). Mater. Sci. Eng. B 102, 380–385.

    Article  Google Scholar 

  12. K. Yoshino, H. Komaki, T. Kakeno, Y. Akaki, and T. Ikari (2003). J. Phys. Chem. Solids 64, 183–189.

    Article  Google Scholar 

  13. S. Shen, L. Zhao, and L. Guo (2011). Mater. Res. Bull. 44, 100–105.

    Article  Google Scholar 

  14. F. Soofivand, M. Salavati-Niasari, and F. Mohandes (2012). Micro. Nano. Lett. 7, 283–289.

    Article  Google Scholar 

  15. L. Andronic, L. Isac, A. Duta, and J. Photoch (2011). Photobiology A 221, 30–36.

    Article  CAS  Google Scholar 

  16. M. Mousavi-Kamazani, M. Salavati-Niasari, and H. Emadi (2012). Mater. Res. Bull. 47, 398–401.

    Article  Google Scholar 

  17. M. Mousavi-Kamazani, M. Salavati-Niasari, and H. Emadi (2012). Micro. Nano. Lett. 7, 896–901.

    Article  Google Scholar 

  18. H. Kim, M. Suh, B. H. Kwon, D. S. Jang, S. W. Kim, and D. Y. Jeon (2011). J. Colloid Interface Sci. 363, 703–708.

    Article  CAS  Google Scholar 

  19. D. C. Pan, L. J. An, Z. M. Sun, W. Hou, Y. Yang, Z. Z. Yang, and Y. F. Lu (2008). J. Am. Chem. Soc. 130, 562–569.

    Google Scholar 

  20. M. Salavati-Niasari, J. Javidi, and F. Davar (2010). Ultrason. Sonochem. 17, 870–877.

    Article  CAS  Google Scholar 

  21. Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, S. Seto, T. Kakeno, and K. Yoshino (2005). J. Phys. Chem. Solids 66, 185–189.

    Article  Google Scholar 

  22. I. Tsuji, H. Kato, and A. Kudo (2011). Chem. Mater. 18, 196–200.

    Google Scholar 

  23. M. Ortega-Lopez, O. Vigil-Galan, F. C. Gandarilla, and O. Solorza-Feria (2003). Mater. Res. Bull. 38, 55–61.

    Article  CAS  Google Scholar 

  24. Z. Aissa, A. Bouzidi, and M. Amlouk (2010). J. Alloys Compd. 506, 492–496.

    Article  CAS  Google Scholar 

  25. M. Salavati-Niasari, N. Mir, and F. Davar (2009). J. Alloys Compd. 476, 908–912.

    Article  CAS  Google Scholar 

  26. L. Tian and J. J. Vittal (2007). New J. Chem. 31, 208–211.

    Article  Google Scholar 

  27. M. L. A. Aguilera, J. R. A. Hernandez, M. A. G. Trujillo, M. O. Lopez, and G. C. Puente (2007). Thin Solid Films 515, 627–630.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to council of University of Shahid Bahonar Kerman and Gol-E-Gohar Iron Mine for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ranjbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, M., Taher, M.A. & Sam, A. Solvent-Free Synthesis of ZnO Nanoparticles by a Simple Thermal Decomposition Method. J Clust Sci 25, 1657–1664 (2014). https://doi.org/10.1007/s10876-014-0764-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0764-7

Keywords

Navigation