Skip to main content
Log in

Self-Cleaning Glass

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Self-cleaning glass with a coated external surface exhibits both photocatalytic and photo-induced superhydrophilic properties. Such properties provide the conditions for the decomposition of organic contaminants and washing-off of inorganic ones by rainwater flowing down in the form of a thin film. The basic data on the mechanism of photocatalysis and photo-induced hydrophobicity on titanium dioxide coatings are provided. The data on the optical, structural, photocatalytic, and superhydrophilic properties of the commercial self-cleaning glass are summarized. It is demonstrated that a layer of organic contaminants of a thickness of up to 10 nm can be removed from the glass surface within 1-hour exposure to sunlight/daylight. The absence of standards for self-cleaning glass is underlined; the problems and results of the glass preparation are indicated. An express-analysis method for the photocatalytic activity of self-cleaning articles is described. The results of long-term in situ testing prove the efficiency of these articles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Fujishima, A. and Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature (London, U.K.), 1972, vol. 238, no. 5358, pp. 37–38.

    Article  Google Scholar 

  2. Fujishima, A., Zhang, X., and Tryk, D.A., TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 2008, vol. 63, pp. 515–582.

    Article  Google Scholar 

  3. Mills, A. and Lee, S.-K., A web-based overview of semiconductor photochemistry-based current commercial applications, J. Photochem. Photobiol., A, 2002, vol. 152, pp. 233–247.

    Article  Google Scholar 

  4. Fujishima, A., Rao, T.N., and Tryk, D.A., Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 2000, vol. 1, pp. 1–21.

    Article  Google Scholar 

  5. Nakata, K. and Fujishima, A., TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C, 2012, vol. 13, pp. 169–189.

    Article  Google Scholar 

  6. Carp, O., Huisman, C.L., and Reller, A., Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 2004, vol. 32, pp. 33–177.

    Article  Google Scholar 

  7. Banerjee, S., Dionysiou, D.D., and Pillai, S.C., Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis, Appl. Catal., B, 2015, vols. 176–177, pp. 396–428.

    Article  Google Scholar 

  8. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., Light-induced amphiphilic surfaces, Nature (London, U.K.), 1997, vol. 388, no. 6641, pp. 431–432.

    Article  Google Scholar 

  9. Savinov, E.N., Photocatalytic methods of water and air purification, Soros. Obraz. Zh., 2000, vol. 6, no. 11, pp. 52–56.

    Google Scholar 

  10. Watanabe, T., Nakajima, A., Wang, R., Minabe, M., Koizumi, S., Fujishima, A., and Hashimoto, K., Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films, 1999, vol. 351, pp. 260–263.

    Article  Google Scholar 

  11. Mirror Systems. http://www.murakami-kaimeido.co.jp/english/technology/mirror/index.html.

  12. Fujishima, A. and Zhang, X., Titanium dioxide photocatalysis: present situation and future approaches, C.R. Chim., 2006, vol. 9, pp. 750–760.

    Article  Google Scholar 

  13. Mills, A., Lepre, A., Elliott, N., Bhopal, S., Parkin, I.P., and O’Neill, S.A., Characterisation of the photocatalyst Pilkington Activ™: A reference film photocatalyst?, J. Photochem. Photobiol., A, 2003, vol. 160, pp. 213–224.

    Article  Google Scholar 

  14. Mellott, N.P., Durucan, C., Pantano, C.G., and Guglielmi, M., Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: Photocatalytic performance and chemical durability, Thin Solid Films, 2006, vol. 502, pp. 112–120.

    Article  Google Scholar 

  15. Peruchon, L., Puzenat, E., Girard-Egrot, A., Blum, L., Herrmann, J.M., and Guillard, C., Characterization of self-cleaning glasses using langmuir-blodgett technique to control thickness of stearic acid multilayers: Importance of spectral emission to define standard test, J. Photochem. Photobiol., A, 2008, vol. 197, pp. 170–176.

    Article  Google Scholar 

  16. Midtdal, K. and Jelle, B.P., Self-cleaning glazing products: A state-of-the-art review and future research pathways, Sol. Energy Mater. Sol. Cells, 2013, vol. 109, pp. 126–141.

    Article  Google Scholar 

  17. ISO 27448: 2009. Fine ceramics (advanced ceramics, advanced technical ceramics)—Test method for self-cleaning performance of semiconducting photocatalytic materials—Measurement of water contact angle.

  18. Mills, A., Hill, C., and Robertson, P.K.J., Overview of the current ISO tests for photocatalytic materials, J. Photochem. Photobiol., A, 2012, vol. 237, pp. 7–23.

    Article  Google Scholar 

  19. Mills, A., Hepburn, J., Hazafy, D., O’Rourke, C., Krysa, J., Baudys, M., Zlamal, M., Bartkova, H., Hill, C.E., Winn, K.R., Simonsen, M.E., Søgaard, E.G., Pillai, S.C., Leyland, N.S., Fagan, R., Neumann, F., Lampe, C., and Graumann, T., A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces, J. Photochem. Photobiol., A, 2013, vol. 272, pp. 18–20.

    Article  Google Scholar 

  20. Mills, A., Hepburn, J., Hazafy, D., O’Rourke, C., Wells, N., Krysa, J., Baudys, M., Zlamal, M., Bartkova, H., Hill, C.E., Winn, K.R., Simonsen, M.E., Sogaard, E.G., Banerjee, S., Fagan, R., and Pillai, S.C., Photocatalytic activity indicator inks for probing a wide range of surfaces, J. Photochem. Photobiol., A, 2014, vol. 290, pp. 63–71.

    Article  Google Scholar 

  21. Verita, M., Geotti-Bianchini, F., Falcone, R., Zangiacomi, G., Chabas, A., and Lombardo, T., Analysis of self-cleaning and float glass: a comparative study of pollution on the glass surface under real life conditions, Glass Technol., 2007, vol. 48, no. 4, pp. 183–190.

    Google Scholar 

  22. Chabas, A., Gentaz, L., Lombardo, T., Sinegre, R., Falcone, R., Verita, M., and Cachier, H., Wet and dry atmospheric deposition on TiO2 coated glass, Environ. Pollut., 2010, vol. 158, pp. 3507–3512.

    Article  Google Scholar 

  23. GOST (State Standard) No. 111-2014, Sheet colorless glass. Technical conditions, 2015.

  24. www.pilkington.com/en-gb/uk/householders/types-of-glass/self-cleaning-glass.

  25. www.diamond-glass.co.uk/downloads/2013/SGG_ BIOCLEAN.pdf.

  26. www.suburbanconstruction.com/windows-sunclean-glass.html.

  27. www.cardinalcorp.com/products/coated-glass/neat-glass/.

  28. www.wecreatesolutions.com/port/brochures/AMG-Radiance-Brochure.pdf.

  29. http://documents.mx/documents/architectural-glass-specifiers-guide.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Maiorov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorov, V.A. Self-Cleaning Glass. Glass Phys Chem 45, 161–174 (2019). https://doi.org/10.1134/S1087659619030052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659619030052

Keywords:

Navigation