Skip to main content
Log in

Phase Transformation in Se75Te13In12 Chalcogenide Thin Films

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In the present research work Se75Te13In12 chalcogenide glass has been prepared by melt quenching technique. The non-isothermal Differential Scanning Calorimetry (DSC) measurement of synthesized alloy has been executed at constant heating rate of 25 K/min. The glass transition temperature (Tg), crystallization temperature (Tc) and melting temperature (Tm) are found to be 349, 376 and 533 K, respectively. Thin films of 400 nm thickness of Se75Te13In12 alloy were prepared by thermal evaporation technique. To study the phase transformation, the thermal annealing was done at two different temperatures 353 and 363 K for 2 h in a vacuum furnace under a vacuum of 10–3 Torr. Optical measurements were done for as-prepared and annealed films. The optical band gap is found to decrease with increasing annealing temperature. The transformed phases of as grown and thermally annealed films were analyzed by High Resolution X-ray diffraction (HRXRD) and Field Emission Scanning Electron Microscope (FESEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hudson, D.D., Magi, E.C., Judge, A.C., Dekker, S.A., and Eggleton, B.J., Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation, Opt. Commun., 2012, vol. 285, pp. 4660–4669.

    Article  CAS  Google Scholar 

  2. Candice, T., Toor, F., Claire, F., Gmachl, C.F., and Arnold, C.F., Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits, Opt. Lett., 2010, vol. 35, no. 20, pp. 3324–3326.

    Article  Google Scholar 

  3. Ailavajhala, M.S., Gonzalez-Velo, Y., Poweleit, C.D., Barnaby, H.J., Kozicki, M.N., Butt, D.P., and Mitkova, M., New functionality of chalcogenide glasses for radiation sensing of nuclear wastes, J. Hazard. Mater., 2014, vol. 269, pp. 68–73.

    Article  CAS  Google Scholar 

  4. Chahal, R., Starecki, F., Boussard-Pledel, C., Doualan, J.L., Michel, K., Brilland, L., Braud, A., Camy, P., Bureau, B., and Nazabal, V., Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers, Sens. Actuators,Ser. B, 2016, vol. 229, pp. 209–216.

    CAS  Google Scholar 

  5. Sun, Y., Dai, S., Zhang, P., Wang, X.Xu., Liu, Z., Chen, F.Wu., Zhang, Y., Wang, R., and Tao, G., Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures, Opt. Express, 2015, vol. 23, pp. 23 t472–23 483.

    Article  Google Scholar 

  6. Pelusi, M.D., Taleed, V.D., Fu, L., Lamont, M.R.E., Madden, S., and Cho, D.Y., Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing, IEEE, 2008, vol. 14, no. 3, pp. 529–539.

  7. Min’ko, V.I., Indutnyy, I.Z., Shepeliavyi, P.E., and Litvin, P.M., Application of amorphous chalcogenide films for recording of high-frequency phase-relief diffraction gratings, J. Optoelectron. Adv. Mater., 2005, vol. 7, no. 3, pp. 1429–1432.

    Google Scholar 

  8. Canciamilla, A., Morichetti, F., Grillanda, S., Velha, P., Sorel, M., Singh, V., Agarwal, A., and Kimerling, L.C., Photo-induced trimming of chalcogenide-assisted silicon waveguides, Opt. Express, 2012, vol. 20, no. 14, pp. 15 807–15 812.

    Article  Google Scholar 

  9. Zakery, A. and Elliott, S.R., Optical nonlinearities in chalcogenide glasses and their applications, Springer Ser. Opt. Sci., 2007, vol. 135, pp. 129–150.

    Article  Google Scholar 

  10. Anne, M.L., Keirsse, J., Nazabal, V., Hyodo, K., and Inoue, S., and Boussard-Pledel, C., Chalcogenide glass optical waveguides for infrared biosensing, Sensors, 2009, vol. 9, pp. 7398–7411.

    Article  CAS  Google Scholar 

  11. Hudgens, S. and Johnson, B., Overview of phase-change chalcogenide nonvolatile memory technology, MRS Bull., 2004, vol. 29, no. 11, pp. 829–832.

    Article  CAS  Google Scholar 

  12. Kolobov, A.V. and Tominaga, J., Chalcogenide glasses in optical recording: Recent progress, J. Optoelectron. Adv. Mater., 2002, vol. 4, no. 3, pp. 679–686.

    CAS  Google Scholar 

  13. Yamada, N., Erasable phase-change optical materials, Mater. Res. Bull., 1996, vol. 21, pp. 48–50.

    Article  CAS  Google Scholar 

  14. Borg, H.J. and Woudenberg, R.V., Trends in optical recording, J. Magn. Magn. Mater., 1999, vol. 193, pp. 521–523.

    Article  Google Scholar 

  15. Ovshinsky, S., Amorphous materials—the key to new devices, IEEE Proc. CAS, 1998, vol. 1, pp. 33–36.

  16. Boolchand, P., Georgiev, D.G.Qu., Wang, F., Chai, L., and Chakravarty, S., Nanoscale phase separation effects near r = 2.4 and 2.67, and rigidity transitions in chalcogenide glasses, C. R. Chim., 2002, Vol. 5, pp. 713–724.

    Article  CAS  Google Scholar 

  17. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., and Takao, M., Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory, J. Appl. Phys., 1991, vol. 69, pp. 2849–2856.

    Article  CAS  Google Scholar 

  18. Coombs, J.H., Jongenelis, A.P.J.M., van Es-Spiekman, W., and Jacobs, B.A.J., Laser-induced crystallization phenomena in GeTe-based alloys, J. Appl. Phys., 1995, vol. 78, pp. 4906–4917.

    Article  CAS  Google Scholar 

  19. Peng, C., Cheng, L., and Mansuripur, M., Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media, J. Appl. Phys., 1997, vol. 82, pp. 4183–4191.

    Article  CAS  Google Scholar 

  20. Nakayama, K., Kojima, K., Hayakawa, F., Imai, Y., Kitagawa, A., and Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys., 2000, vol. 39, pp. 6157–6161.

    Article  CAS  Google Scholar 

  21. Lai, S. and Lowrey, T., OUM-A 180 nm nonvolatile memory cell element technology for standalone and embedded applications, in Technical Digest of the International Electron Devices Meeting,2001, vol. 1, pp. 803–806.

  22. Yoon, S.M., Lee, N.Y., Ryu, S.O., Chio, K.J., Park, Y.S., Lee, S.Y., Yu, B.G., Kang, M.J., Chio, S.Y., and Wuttig, M., Sb-Se-based phase-change memory device with lower power and higher speed operations, IEEE Electron Dev. Lett., 2006, vol. 27 p, pp. 445–447.

  23. Tripathi, R.P., Akhtar, M.S., Alvi, M.A., and Khan, S.A., A study on photo-induced crystallization in Ga10Se78Tl12 thin films, J. Mater. Sci., 2015, vol. 26, no. 8, pp. 6206–6211.

    CAS  Google Scholar 

  24. Tripathi, R.P., Akhtar, M.S., Alvi, M.A., and Khan, S.A., Influence of annealing treatment on phase transformation of Ga15Se77Tl8 thin films, J. Mater. Sci., 2016, vol. 27, no. 8, p. 8287.

    Google Scholar 

  25. Kamboj, MS., Kaur, G., Thangaraj, R., and Avasthi, D.K., Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films, J. Phys. D: Appl. Phys., 2002, vol. 35, no. 5, pp. 477–479.

    Article  CAS  Google Scholar 

  26. Srivastava, A., Tripathi, R.P., Akhtar, M.S., and Khan, S.A., Studies on phase change Ge15Se77Sb8 thin films by laser irradiation, J. Mater. Sci., 2016, vol. 27, no. 3, pp. 2426–2429.

    CAS  Google Scholar 

  27. Lafi, O.A. and Imran, M.M.A., The effect of gamma irradiation on glass transition temperature and thermal stability of Se96Sn4 chalcogenide glass, Radiat. Phys. Chem., 2010, vol. 79, pp. 104–108.

    Article  CAS  Google Scholar 

  28. Dwivedi, D.K., Pathek, H.P., Shukla N., and Kumar, A., Effect of thermal annealing on structure and optical band gap of amorphous Se75 – xTe25Sbx thin films by vacuum evaporation technique, J. Ovonic Res., 201, vol. 10, no. 1, pp. 15–22.

  29. Khan, S.A., Lal, J.K., and Al-Ghamdi, A.A., Thermal annealing effect of on optical constants of vacuum evaporated Se75S25 – xCdx chalcogenide thin films, Opt. Laser Technol., 2010, vol. 42, no. 5, pp. 839–844.

    Article  CAS  Google Scholar 

  30. Khan, S.A., Lal J.K., Al-Agel, F.A., and Alvi, M.A., Non-isothermal crystallization in Ga–Se–Ag chalcogenide glass by differential scanning calorimetry, J. Alloys Compd., 2013, vol. 554, pp. 227–231.

    Article  CAS  Google Scholar 

  31. Li, Z., Zheng, S., Zhang, Y., Teng, R., Huang, T., Chena, C., and Lua, G., Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method, J. Mater. Chem. A, 2013, vol. 1, pp. 15046–15052

    Article  CAS  Google Scholar 

  32. Tabernor, J., Christiana, P., and O’Brien, P., A general route to nanodimensional powders of indium chalcogenides, J. Mater. Chem., 2006, vol. 16, pp. 2082–2087.

    Article  CAS  Google Scholar 

  33. Thirumavalavan, S., Investigation of the structural, optical and electrical properties of copper selenide thin films, Mater. Res., 2015, Vol. 18, no. 5, pp. 1000–1007.

    Article  CAS  Google Scholar 

  34. Bhalerao, A.B., Wagh, B.G., Shinde, N.M., Jamburec, S.B., and Lokhande, C.D., Crystalline zinc indium selenide thin film electrosynthesis and its photoelectrochemical studies, Energy Proc., 2014, vol. 54, pp. 549–556.

    Article  CAS  Google Scholar 

  35. Hafiz, M.M., El-Kabany, N., Mahfoz Kotb, H., and Bakier, Y.M., Annealing effects on structural and optical properties of Ge10Sb30Se60 thin film, Int. J. Thin Films Sci. Technol., 2015, vol. 4, no. 3, pp. 163–171.

    Google Scholar 

  36. Khan, S.A. and Al Ghamdi, A.A., Influence of laser-irradiation on the optical constants Se75S25 – xCdx thin films, Mater. Lett., 2009, vol. 63, pp. 1740–1742.

    Article  CAS  Google Scholar 

  37. Khan, S.A., Zulfequar, M., and Husain, M., Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films, Curr. Appl. Phys., 2010, vol. 10, pp. 145–152.

    Article  Google Scholar 

  38. Tauc, J., Amorphous and Liquid Semiconductors, New York: Plenum, 1974, p. 159.

    Book  Google Scholar 

  39. Aly, K.A., Osman, M.A., Abousehly, A.M., and Othman, A.A., Effect of heat treatment on the optical and electrical transport properties of Ge15Sb10Se75 and Ge25Sb10Se65 thin films, J. Phys. Chem. Solids, 2008, vol. 69, pp. 2514–2519.

    Article  CAS  Google Scholar 

  40. Mott, N.F., Conduction in non-crystalline materials, Philos. Mag., 1969, Vol. 19, no. 160, pp. 835–852.

    Article  CAS  Google Scholar 

  41. Hasegawa, S., Yazaia, S., and Shimizu, T., Investigation of the effect of film thickness and heat treatment on the optical properties of TeSeSn thin films, Solid State Commun., 1978, vol. 26, pp. 407–410.

    Article  CAS  Google Scholar 

  42. Chaudhri, S. and Biswas, S.K., Variation of optical gap of thick amorphous selenium film, J. Non-Cryst. Solids, 1983, vol. 54, pp. 179–182.

    Article  Google Scholar 

  43. Rafea, M.A. and Farid H., Phase change and optical band gap behavior of Se0.8S0.2 chalcogenide glass films, Mater. Chem. Phys., 2009, vol. 113, nos. 2–3, pp. 868–872.

    Article  Google Scholar 

  44. Al-Agel, F.A., Al-Arfaj, E.A., Al-Marzouki, F.M., Khan, S.A., and Al-Ghamdi, A.A., Study of phase separation in Ga25Se75 – xTex chalcogenide thin films, Prog. Nat. Sci.: Mater. Int., 2013, vol. 23, no. 2, pp. 139–144.

    Article  Google Scholar 

  45. Toyama, T., Konishi, T., Seo, Y., Tsuji, R., Terai, K., Nakashima, Y., Maenishi, R., Arata, A., Yudate, S., and Tsutsumi, Y., Annealing-induced optical-bandgap widening of Cu2ZnSnS4 thin films with observation of simultaneous increase in local-structure ordering, Jpn. J. Appl. Phys., 2014, vol. 54, no. 1.

  46. Khan, S.A., Khan, Z.H., El-Sebaii, A.A., Al-Marzouki, F.M., and Al-Ghamdi, A.A., Structural, optical and electrical properties of cadmium-doped lead chalcogenide (PbSe) thin films, Phys. B (Amsterdam, Neth.), 2010, vol. 405, pp. 3384–3390.

    Google Scholar 

Download references

FUNDING

Thanks are due to UGC, New Delhi, India for providing financial support in form of Major Research Project (F. no. 42-780/2013 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Tiwari, S.N., Lal, J.K. et al. Phase Transformation in Se75Te13In12 Chalcogenide Thin Films. Glass Phys Chem 45, 111–118 (2019). https://doi.org/10.1134/S1087659619020111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659619020111

Keywords:

Navigation