Skip to main content
Log in

Thermal stability and crystallization kinetics of Er-doped Ge–Sb–Se chalcogenide: a DSC study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Amorphous materials specifically chalcogenide glasses (Se, Te, and Sb alloys) are promising materials for fabrication of different solid-state devices and their characteristics can further be improved by doping with rare-earth element. Current study deals with phase transformation, thermal stability, and crystallization kinetics of Er-doped quaternary chalcogenide system which were synthesized using melt quenching technique. In this study, Ge17Sb8Se75−xErx (x = 0, 0.4, 0.8, and 1.0) alloy has been examined from differential scanning calorimetry data wherein the stability and kinetics is studied at variable heating rates. As a standard procedure, non-isothermal conditions were used throughout the kinetic and crystallization studies for understanding the variation in glass transition temperature, melting temperature, thermal stability factor, activation energy of glass transition, and crystallization wherein besides the role of chalcogen element, the doping concentration of rare-earth Er is also understood. Furthermore, devitrification resistance was also analyzed based on activation energy for crystallization. The synthesized Er-doped GeSbSe system shows an increase in transition temperature, melting temperature, thermal stability, and glass-forming ability when the concentration of Er and heating rate increases as compared to the pure alloy. Furthermore, decrease in the activation energy has been observed for Er-doped quaternary chalcogenide system. These observations indicate the potential of Er-GeSbSe chalcogenide glass as phase change memory material and other applications which needs high thermal stability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets produced during the current study are available upon reasonable request from the corresponding author.

References

  1. J.C. Phillips, Topology of covalent non-crystalline solids II: Medium-range order in chalcogenide alloys and A-Si (Ge). J. Non-Cryst. Solids 43(1), 37–77 (1981)

    ADS  MathSciNet  Google Scholar 

  2. C. Kumari et al., Photocatalytic activity of GeSbSeEr quaternary chalcogenide for efficient methylene blue degradation in visible light. Results Surf. Interfaces 9, 100088 (2022)

    Google Scholar 

  3. S. Ahmadpour, M. Rezvani, Microstructure, mechanical and thermal properties of chalcogenide glasses and glass-ceramics based on Se-As-Ge system nucleated by Sn. Adv. Ceram. Progress 5(1), 15–22 (2019)

    Google Scholar 

  4. C. Kumari, P. Sharma, S. Chhoker, Photocatalytic performance of quaternary chalcogenides for degradation of cationic dye: a UV-cut study. IEEE, pp. 644–647 (2022)

  5. N. Suri, K. Bindra, R. Thangaraj, Electrical conduction and photoconduction in Se80xTe20Bix thin films. J. Phys. Condens. Matter. Condens. Matter 18(39), 9129 (2006)

    ADS  Google Scholar 

  6. V.G. Ta’eed et al., Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express 15(15), 9205–9221 (2007)

    ADS  PubMed  Google Scholar 

  7. R. Tintu, V. Nampoori, P. Radhakrishnan, S. Thomas, Nonlinear optical studies on nanocolloidal Ga–Sb–Ge–Se chalcogenide glass. J. Appl. Phys. 108(7), 073525 (2010)

    ADS  Google Scholar 

  8. P. Dos Santos, M. De Araujo, A. Gouveia-Neto, J. Medeiros Neto, A. Sombra, Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass. Appl. Phys. Lett. 73(5), 578–580 (1998)

    ADS  Google Scholar 

  9. P. Guo, C. Li, W. Huang, W. Zhang, P. Zhang, T. Xu, Thermal annealing of Ge–Se thin films and its influence on waveguide performance. Opt. Mater. Express 10(1), 129–137 (2020)

    ADS  Google Scholar 

  10. M. Frumar, T. Wagner, Ag doped chalcogenide glasses and their applications. Curr. Opin. Solid State Mater. Sci. 7(2), 117–126 (2003)

    ADS  Google Scholar 

  11. K. Alageshwaramoorthy et al., Synthesis and characterization of visible-light-driven novel CuTa2O6 as a promising practical photocatalyst, Front. Chem. 11 (2023)

  12. C. Kumari, S. Chhoker, P. Sharma, Effect of rare earth dopant on the ac conductivity and dielectric study of GeSbSe chalcogenides glasses. J. Non-Cryst. Solids 616, 122439 (2023)

    Google Scholar 

  13. X. Xiang, L. Wang, J. Zhang, B. Cheng, J. Yu, W. Macyk, Cadmium chalcogenide (CdS, CdSe, CdTe) quantum dots for solar-to-fuel conversion. Adv. Photon. Res. 3(11), 2200065 (2022)

    Google Scholar 

  14. C. Kumari, P. Sharma, S.C. Katyal, S. Chhoker, Correlation of optical parameters of pure and doped Ge17Sb8Se75xErx chalcogenides films using transmission spectra. Opt. Mater. 132, 112748 (2022)

    Google Scholar 

  15. C. Kumari, P. Sharma, S. Chhoker, Electrical and photoluminescence studies of GeSbSeEr chalcogenide films. In: Materials Today: Proceedings (2023)

  16. M.A. Popescu, Non-crystalline chalcogenicides (Springer, Berlin, 2001)

    Google Scholar 

  17. Y.G. Choi, Spatial distribution of rare-earth ions in Se-based chalcogenide glasses with or without Ga. J. Non-Cryst. Solids 353(18–21), 1930–1935 (2007)

    ADS  Google Scholar 

  18. G. Li et al., Er3+ doped and Er3+/Pr3+ co-doped gallium-antimony-sulphur chalcogenide glasses for infrared applications. Opt. Mater. Express 6(12), 3849–3856 (2016)

    ADS  Google Scholar 

  19. F. Starecki et al., Dy3+ doped GaGeSbSe fiber long-wave infrared emission. J. Lumin. 218, 116853 (2020)

    Google Scholar 

  20. M. Churbanov et al., Peculiarities of 1.6–7.5 µm Pr3+ luminescence in Ge36Ga5Se59 glass. Opt. Mater. Express 9(11), 4154–4164 (2019)

    ADS  Google Scholar 

  21. N. Abdellaoui et al., Tb3+ doped Ga5Ge20Sb10 Se65x Tex (x = 0–37.5) chalcogenide glasses and fibers for MWIR and LWIR emissions. Opt. Mater. Express 8(9), 2887–2900 (2018)

    ADS  Google Scholar 

  22. J. Heo, W. Chung, Rare-earth-doped chalcogenide glass for lasers and amplifiers, in Chalcogenide glasses. (Elsevier, Oxford, 2014), pp.347–380

    Google Scholar 

  23. V. Nazabal, J.-L. Adam, Infrared luminescence of chalcogenide glasses doped with rare earth ions and their potential applications. Opt. Mater. X 15, 100168 (2022)

    Google Scholar 

  24. Y.S. Tver’yanovich, A. Tverjanovich, Rare-earth doped chalcogenide glass. Semicond. Semimetals 80(C), 169–207 (2004)

    Google Scholar 

  25. C. Kumari, S.C. Katyal, S. Chhoker, P. Sharma, Complex Er-doped selenium-based chalcogenides in the far-infrared region: a structural bonding arrangement study. Phys. Scr. 97(8), 085707 (2022)

    ADS  Google Scholar 

  26. Z. Huang, J. Li, Q. Rao, Y. Zhou, Crystallization behaviors of Al–Ni–La amorphous alloys with trace Ti and B. J. Non-Cryst. Solids 355(2), 154–158 (2009)

    ADS  Google Scholar 

  27. X. Li, X. Bian, L. Hu, Y. Wu, J. Zhang, Effect of microalloying on glass formation and thermal stability of Cu–Pr-based amorphous alloys. J. Alloys Compd. 439(1–2), 87–90 (2007)

    Google Scholar 

  28. C. Kumari, S. C. Katyal, P. Sharma, Different models for calculating the refractive index and band gap for chalcogenide glasses, Presented at the Proceedings of the 65th DAE Solid State Physics Symposium (2021)

  29. C. Kumari, S.C. Katyal, P. Sharma, Erbium-doped GeSbSe glassy semiconductors and theoretical analysis of constraint, electronic and thermal properties. Phase Trans. 94(12), 945–958 (2021)

    Google Scholar 

  30. A. Mathew, J. Ravi, K.N. Madhusoodanan, K.P.R. Nair, T.M.A. Rasheed, Thermal diffusivity measurements of semiconducting amorphous GexSe100x thin films by photothermal deflection technique. Appl. Surf. Sci. 227(1–4), 410–415 (2004)

    ADS  Google Scholar 

  31. A. Madan, M.P. Shaw, The physics and applications of amorphous semiconductors (Elsevier, London, 2012)

    Google Scholar 

  32. G. Eisenman, Glass electrodes for hydrogen and other cations: principles and practice (M. Dekker, New York, 1967)

    Google Scholar 

  33. A.M. Abd-Elnaiem, G. Abbady, A thermal analysis study of melt-quenched Zn5Se95 chalcogenide glass. J. Alloys Compd. 818, 152880 (2020)

    Google Scholar 

  34. S. Sharda, N. Sharma, P. Sharma, V. Sharma, Glass transition and crystallization kinetics analysis of Sb–Se–Ge chalcogenide glasses. J. Therm. Anal. Calorim. 115, 361–366 (2014)

    Google Scholar 

  35. H. Zhao, Y. Koh, M. Pyda, S. Sen, S. Simon, The kinetics of the glass transition and physical aging in germanium selenide glasses. J. Non-Cryst. Solids 368, 63–70 (2013)

    ADS  Google Scholar 

  36. M. Heireche, M. Belhadji, N. Hakiki, Non-isothermal crystallisation kinetics study on Se90x In 10 Sbx (x = 0, 1, 2, 4, 5) chalcogenide glasses. J. Therm. Anal. Calorim. 114, 195–203 (2013)

    Google Scholar 

  37. A. Kaswan, V. Kumari, D. Patidar, N.S. Saxena, K. Sharma, Kinetics of crystallization of Ge30xSe70Sbx (x = 15, 20, 25) chalcogenide glasses. Process. Appl. Ceram. 8(1), 25–30 (2014)

    Google Scholar 

  38. C. Dohare, N. Mehta, Investigation of crystallization kinetics in glassy Se and binary Se98M2 (M = Ag, Cd, Zn) alloys using DSC technique in non-isothermal mode. J. Crystall. Process Technol. 2(4), 167–174 (2012)

    Google Scholar 

  39. S.A. Khan, F. Al-Hazmi, A.S. Faidah, S. Yaghmour, A.M. Al-Sanosi, A. Al-Ghamdi, Kinetics of Se75S25xCdx glassy system using differential scanning calorimeter. J. Alloys Compd. 484(1–2), 649–653 (2009)

    Google Scholar 

  40. S.A. Khan, Z.H. Khan, M. Zulfequar, M. Husain, Kinetics study of a-Se80Te20xPbx using non-isothermal crystallization. Phys. B 400(1–2), 180–184 (2007)

    ADS  Google Scholar 

  41. S.A. Khan, M. Zulfequar, M. Husain, On the crystallization kinetics of amorphous Se80In20xPbx. Solid State Commun.Commun. 123(10), 463–468 (2002)

    ADS  Google Scholar 

  42. S.A. Khan, M. Zulfequar, M. Husain, The activation energy and the Avrami exponent for crystallization in a-Bi0.5Se99.5xZnx glasses. Curr. Appl. Phys. 3(4), 337–343 (2003)

    ADS  Google Scholar 

  43. C. Kumari, P. Sharma, M. Tanwar, H. Sharma, R. Kumar, S. Chhoker, Unveiling quaternary GeSbSeEr chalcogenides as photocatalyst: degradation of cationic and anionic pollutant in visible light. Opt. Mater. 134, 113122 (2022)

    Google Scholar 

  44. N. Sharma, S. Sharda, V. Sharma, P. Sharma, Thermal analysis of quaternary Ge–Se–Sb–Te chalcogenide alloys. J. Therm. Anal. Calorim. 119, 213–218 (2015)

    Google Scholar 

  45. M. Abousehly, A. Abd Elnaeim, K. Aly, A. Dahshan, Thermal analysis of quaternary Ge-As-Te-Sn glasses. Int. J. New. Hor. Phys 2(2), 63–69 (2015)

    Google Scholar 

  46. A. Abd Elnaeim, K. Aly, N. Afify, A. Abousehlly, Glass transition and crystallization kinetics of Inx (Se0.75Te0.25)100x chalcogenide glasses. J. Alloys Compd. 491(1–2), 85–91 (2010)

    Google Scholar 

  47. R. Kumar, P. Sharma, P. Barman, V. Sharma, S. Katyal, V. Rangra, Thermal stability and crystallization kinetics of Se–Te–Sn alloys using differential scanning calorimetry: DSC study of Se 92 Te8x Snx (x = 0, 1, 2, 3, 4, 5) chalcogenide glasses. J. Therm. Anal. Calorim. 110(3), 1053–1060 (2012)

    Google Scholar 

  48. S.F. Naqvi, N. Saxena, Kinetics of phase transition and thermal stability in Se80x Te20 Znx (x = 2, 4, 6, 8, and 10) glasses. J. Therm. Anal. Calorim. 108(3), 1161–1169 (2012)

    Google Scholar 

  49. A. Hrubý, Evaluation of glass-forming tendency by means of DTA. Czechoslovak J. Phys. B 22(11), 1187–1193 (1972)

    ADS  MathSciNet  Google Scholar 

  50. M. Mohamed, M. Abdel-Rahim, Thermal analysis studies of Ge additive of Se–Te glasses. Appl. Phys. A 122, 1–7 (2016)

    Google Scholar 

  51. M.M. Imran, N. Saxena, D. Bhandari, M. Husain, Glass transition phenomena, crystallization kinetics and enthalpy released in binary Se100xInx (x = 2, 4 and 10) semiconducting glasses. Phys. Status Solidi (a) 181(2), 357–368 (2000)

    ADS  Google Scholar 

  52. W. Kauzmann, The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43(2), 219–256 (1948)

    Google Scholar 

  53. M. Lasocka, The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater. Sci. Eng. 23(2–3), 173–177 (1976)

    Google Scholar 

  54. B.S. Patial, N. Thakur, S. Tripathi, Estimation of Tg for Se-Te-Sb system using modified Gibbs-DiMarzio law. J. Therm. Anal. Calorim. 106, 845 (2011)

    Google Scholar 

  55. J. Augis, J. Bennett, Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Therm. Anal. 13, 283–292 (1978)

    Google Scholar 

  56. H.E. Kissinger, Differential thermal analysis. J. Res. Natl. Bur. Stand. 57(4), 217 (1956)

    Google Scholar 

  57. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)

    Google Scholar 

  58. B.S. Patial, S. Bhardwaj, A. Awasthi, N. Thakur, On the crystallization kinetics of multicomponent nano-chalcogenide Se79x Te15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) alloys. Nano Express 1(3), 030021 (2020)

    Google Scholar 

  59. S. Mahadevan, A. Giridhar, A. Singh, Calorimetric measurements on as-sb-se glasses. J. Non-Cryst. Solids 88(1), 11–34 (1986)

    ADS  Google Scholar 

  60. C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78(26), 2673–2677 (1974)

    Google Scholar 

  61. S. Kumar, V. Sharma, Improvement in thermal stability and crystallization mechanism of Sm doped Ge2Sb2Te5 thin films for phase change memory applications. J. Alloy. Compd. 893, 162316 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CK: conceptualization, data curation, formal analysis, investigation, methodology, and writing—original draft. SC: formal analysis, supervision, validation, supervision, and writing—review and editing. PS: conceptualization, formal analysis, and methodology.

Corresponding author

Correspondence to Sandeep Chhoker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, C., Chhoker, S. & Sharma, P. Thermal stability and crystallization kinetics of Er-doped Ge–Sb–Se chalcogenide: a DSC study. Appl. Phys. A 130, 164 (2024). https://doi.org/10.1007/s00339-024-07310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07310-3

Keywords

Navigation