Skip to main content
Log in

Emission properties of 1.8 and 2.3 μm in Tm3+-doped fluoride glass

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In this work a Tm3+-doped fluoride glass with good thermal stability is prepared. Intensive 1.8 and 2.3 μm emissions are obtained when pumped by an 800 nm laser diode. And the 1.48 μm emission is limited because of the much strong radiation around 1.8 μm. On the basis of absorption spectrum, radiative properties are investigated and discussed according to Judd–Ofelt parameters (Ω2, Ω4, Ω6) calculated by Judd–Ofelt theory. Besides, absorption and emission cross-sections of 3 F 43 H 6 transition are figured out and analyzed by using McCumber and Beer–Lambert theories. The high gain around 1.8 μm was predicted by the large σemiτrad product (29.8 × 10–21 cm2 ms). The results obtained indicate that the Tm3+-doped fluoride glass can be a promising 2.0 μm laser glass material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cornacchia, F., Toncelli, A., and Tonelli, M., 2-μm lasers with fluoride crystals: Research and development, Prog. Quantum. Electron., 2009, vol. 33, nos. 2–4, pp. 61–109.

    Article  Google Scholar 

  2. Chen, R., Tian, Y., Li, B., Jing, X., and Zhang, J., Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass, Photon. Res., 2016, vol. 4, no. 6, pp. 214–221.

    Article  Google Scholar 

  3. Wang, Z., Zhang, B., Ning, J., Zhang, X., Su, X., and Zhao, R., High-peak-power passively Q-switched 1.3 μm Nd: YAG/V3+:YAG laser pumped by a pulsed laser diode, Chin. Opt. Lett., 2015, vol. 13, no. 2, pp. 021403-1–021403-4.

    Article  Google Scholar 

  4. Sousa, D., Zonetti, L., Bell, M., Sampaio, J., Nunes, L., Baesso, M., Bento, A., and Miranda, L., On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses, Appl. Phys. Lett., 1999, vol. 74, no. 7, pp. 908–910.

    Article  Google Scholar 

  5. Kuan, P., Fan, X., Li, W., Liu, X., Yu, C., Zhang, L., and Hu, L., High-efficiency ~ 2 μm laser in a singlemode Tm-doped lead germanate composite fiber, Chin. Opt. Lett., 2016, vol. 14, no. 8, pp. 81601-1–81601-4.

    Article  Google Scholar 

  6. Ji, E., Liu, Q., Hu, Z., Yan, P., and Gong, M., Highpower, high-energy Ho:YAG oscillator pumped by a Tm-doped fiber laser, Chin. Opt. Lett., 2015, vol. 13, no. 12, pp. 121402-1–121402-5.

    Article  Google Scholar 

  7. Tsang, Y., Coleman, D., and King, T., High power 1.9 μm Tm3+-silica fibre laser pumped at 1.09 μm by a Yb3+-silica fibre laser, Opt. Commun., 2004, vol. 231, nos. 1–6, pp. 357–364.

    Article  Google Scholar 

  8. Evans, C., Ikonic, Z., Richards, B., Harrison, P., and Jha, A., Numerical rate equation modeling of a ~2.1-μm-Tm3+/Ho3+ Co-doped tellurite fiber laser Cr, J. Lightwave Technol., 2009, vol. 27, no. 19, pp. 4280–4288.

    Article  Google Scholar 

  9. Wang, Q., Geng, J., Luo, T., and Jiang, S., Modelocked 2 μm laser with highly thulium-doped silicate fiber, Opt. Lett., 2009, vol. 34, no. 23, pp. 3616–3618.

    Article  Google Scholar 

  10. Vyas, S., Tanabe, T., Tiwari, T., and Singh, G., Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation, Chin. Opt. Lett., 2016, vol. 14, no. 12, pp. 123201-1–123201-5.

    Google Scholar 

  11. Jackson, S., Sabella, A., and Lancaster, D., Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm, IEEE J. Sel. Top. Quantum Electron., 2007, vol. 13, no. 3, pp. 567–572.

    Article  Google Scholar 

  12. Adam, J., Poncon, V., Lucas, J., and Boulon, G., Site selection spectroscopy in Eu3+-doped fluorozirconate glass, J. Non-Cryst. Solids, 1987, vol. 91, no. 2, pp. 191–202.

    Article  Google Scholar 

  13. Harrison, M., Denning, R., and Davey, S., Fluorescence line narrowing spectroscopy of europium(III) ions in a fluorozirconate glass, J. Non-Cryst. Solids, 1995, vol. 184, no. 1, pp. 286–291.

    Article  Google Scholar 

  14. Lavin, V., Rodriguez, V., Martin, I., and Rodriguez-Mendoza, U., Optical properties of Eu3+ and Ho3+ in fluoride glasses, J. Appl. Spectrosc., 1995, vol. 62, no. 4, pp. 766–770.

    Article  Google Scholar 

  15. Huang, F., Cheng, J., Liu, X., Hu, L., and Chen, D., Ho3+/Er3+-doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications, Opt. Express, 2014, vol. 22, no. 17, pp. 20924–20935.

    Article  Google Scholar 

  16. Lebullenger, R., Benjaballah, S., LeDeit, C., and Poulain, M., Systematic substitutions in ZBLA and ZBLAN glasses, J. Non-Cryst. Solids, 1993, vol. 161, no. 2, pp. 217–221.

    Article  Google Scholar 

  17. Saad, M. and Poulain, M., Glass forming ability criterion, Mater. Sci. Forum, 1987, vols. 19–20, pp. 11–18.

    Google Scholar 

  18. Rigout, N., Adam, J., and Lucas, J., Chemical and physical compatibilities of fluoride and fluorophosphate glasses, J. Non-Cryst. Solids, 1995, vol. 184, no. 1, pp. 319–323.

    Article  Google Scholar 

  19. Balda, R., Lacha, L., Fernández, J., and Fernández-Navarro, J., Optical spectroscopy of Tm3+ ions in GeO2–PbO–Nb2O5 glasses, Opt. Mater., 2005, vol. 27, no. 11, pp. 1771–1775.

    Article  Google Scholar 

  20. Shi, D., Zhang, Q., Yang, G., and Jiang, Z., Spectroscopic properties and energy transfer in Ga2O3–Bi2O3–PbO–GeO2 glasses codoped with Tm3+ and Ho3+, J. Non-Cryst. Solids, 2007, vol. 353, nos. 16–17, pp. 1508–1514.

    Article  Google Scholar 

  21. Pollack, S. and Robinson, M., Laser emission of Er3+ in ZrF4-based fluoride glass, Electron. Lett., 1988, vol. 24, no. 6, pp. 320–322.

    Article  Google Scholar 

  22. Azkargorta, J., Parraguirre, I., Balda, R., and Fernández, J., On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses, Opt. Express, 2008, vol. 16, no. 16, pp. 11894–11906.

    Article  Google Scholar 

  23. Fan, M., Li, Tao., Zhao, S., Multilayer black phosphorus as saturable absorber for an Er:Lu2O3 laser at 3 μm, Photon. Res., 2016, vol. 4, no. 5, pp. 181–186.

    Article  Google Scholar 

  24. Li, M., Bai, G., Guo, Y., Hu, L., and Zhang, J., Investigation on Tm3+-doped silicate glass for 1.8 μm emission, J. Lumin., 2012, vol. 132, no. 7, pp. 1830–1835.

    Article  Google Scholar 

  25. Doualan, J., Girard, S., and Haquin, H., Spectroscopic properties and laser emission of Tm-doped ZBLAN glass at 1.8 μm, Opt. Mater., 2003, vol. 24, no. 3, pp. 563–574.

    Article  Google Scholar 

  26. Tian, Y., Xu, R., Hu, L., and Zhang, J., Effect of chloride ion introduction on structural and 1.5 μm emission properties in Er3+-doped fluorophosphate glass, Opt. Soc., 2011, vol. 28, no. 7, pp. 1638–1644.

    Article  Google Scholar 

  27. Kermaoui, A. and Pelle, F., Synthesis and infrared spectroscopic properties of Tm3+-doped phosphate glasses, J. Alloys Compd., 2009, vol. 469, nos. 1–2, pp. 601–608.

    Article  Google Scholar 

  28. Judd, B., Optical absorption intensities of rare-earth ions, Phys. Rev., 1962, vol. 127, no. 3, pp. 750–761.

    Article  Google Scholar 

  29. Ofelt, G., Intensities of crystal spectra of rare-earth ions, J. Chem. Phys., 1962, vol. 37, no. 3, pp. 511–520.

    Article  Google Scholar 

  30. Tian, Y., Xu, R., Hu, L., and Zhang, J., 1.8 μm emission of highly thulium doped fluorophosphate glasses, J. Appl. Phys., 2010, vol. 108, no. 8, pp. 83504-1–83504-7.

    Article  Google Scholar 

  31. Balda, R., Lacha, L., and Fernandez, J., Optical spectroscopy of Tm3+ ions in GeO2–Pbo–Nb2O5 glasses, Opt. Mater., 2005, vol. 27, no. 11, pp. 1771–1775.

    Article  Google Scholar 

  32. Peng, B. and Izumitani, T., Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+-doped near-infrared laser glasses, sensitized by Yb3+, Opt. Mater., 1995, vol. 4, no. 6, pp. 797–810.

    Article  Google Scholar 

  33. Li, K., Zhang, Q., and Bai, G., Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses, J. Alloys Compd., 2010, vol. 504, no. 2, pp. 573–578.

    Article  Google Scholar 

  34. Arunkumar, S. and Marimuthu, K., Spectroscopic properties of Er3+-doped bismuth lead telluroborate glasses for 1.53 μm optical amplifiers, J. Alloys Compd., 2014, vol. 627, no. 5, pp. 54–68.

    Google Scholar 

  35. Li, K., Wang, G., Zhang, J., and Hu, L., Broadband ~2 μm emission in Tm3+/Ho3+ Co-doped TeO–WO3–La2O3 glass, Solid State Commun., 2010, vol. 150, nos. 39–40, pp. 1915–1918.

    Article  Google Scholar 

  36. McCumber, D., Theory of phonon-terminated optical masers, Phys. Rev. A, 1964, vol. 134, no. 2, pp. 299–306.

    Article  Google Scholar 

  37. Judd, B., Optical absorption intensities of rare-earth ions, Phys. Rev., 1962, vol. 127, no. 3, pp. 750–761.

    Article  Google Scholar 

  38. Zou, X. and Toratani, X., Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+Ho3+ doubly- doped glasses, J. Non-Cryst. Solids, 1996, vol. 195, nos. 1–2, pp. 113–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feifei Huang or Shiqing Xu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, F., Huang, F., Lei, R. et al. Emission properties of 1.8 and 2.3 μm in Tm3+-doped fluoride glass. Glass Phys Chem 43, 340–346 (2017). https://doi.org/10.1134/S1087659617040058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659617040058

Navigation